Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Technical Paper

An Experimental Investigation of the Effect of Bore-to-Stroke Ratio on a Diesel Engine

2013-09-08
2013-24-0065
The more and more severe regulations on exhaust emissions from vehicles and the worldwide demand for fuel consumption reduction impose continuous improvements of the engine thermal efficiency. Base engine geometrical setups are important aspects which have to be taken into account to improve the engine efficiency. This paper discusses the influence of the bore-to-stroke ratio on emissions, fuel consumption and full load performances of a Diesel engine. The expected advantage of a reduced bore-to-stroke ratio is mainly a decrease of the thermal losses, due to a higher volume-to-surface ratio, reducing the wall surfaces, responsible for the heat losses, per volume of gas. The advantages concerning the wall heat losses are opposed to the disadvantages of lower volumetric efficiency, as a smaller bore requires smaller valve diameter. Additionally does a reduction of the bore-to-stroke ratio lead to an increase of the friction losses, as the mean piston speed increases.
Technical Paper

Surrogate Diesel Fuel Models for Low Temperature Combustion

2013-04-08
2013-01-1092
Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
Technical Paper

Engine Development Using Multi-dimensional CFD and Computer Optimization

2010-04-12
2010-01-0360
The present work proposes a methodology for diesel engine development using multi-dimensional CFD and computer optimization. A multi-objective genetic algorithm coupled with the KIVA3V Release 2 code was used to optimize a high speed direct injection (HSDI) diesel engine for passenger car applications. The simulations were conducted using high-throughput computing with the CONDOR system. An automated grid generator was used for efficient mesh generation with 11 variable piston bowl geometry parameters. The first step in the procedure was to search for an optimal nozzle and piston bowl design. In this case, spray targeting, swirl ratio, and piston bowl shape were optimized separately for two full-load cases using simpler efficient combustion models (the characteristic time scale model and the shell ignition model). The optimal designs from the two optimizations were then validated using a combustion model with detailed chemistry (KIVA-CHEMKIN model and ERC n-heptane mechanism).
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Journal Article

Modeling the Effects of In-Cylinder Flows on HSDI Diesel Engine Performance and Emissions

2008-04-14
2008-01-0649
In the present work the three-dimensional KIVA CFD code was used to simulate the combustion process in a HSDI diesel engine. State-of-the-art models, including the KH-RT spray breakup model, the RNG k-ε turbulence model, and a n-heptane reduced chemistry including reduced GRI NOx mechanism were used. The performances of two combustion models, KIVA-CHEMKIN and GAMUT (KIVA-CHEMKIN-G), coupled with 2-step and multi-step phenomenological soot models were compared. The numerical results were compared with available experimental data obtained from an optically accessible HSDI engine and good agreement was obtained. To assess the effects of the in-cylinder flow field on combustion and emissions, off-centered swirl flows were also considered. In these studies, the swirl center was initialized at different positions in the chamber for different cases to simulate the effects of different intake flow arrangements.
Technical Paper

CFD Optimization of DI Diesel Engine Performance and Emissions Using Variable Intake Valve Actuation with Boost Pressure, EGR and Multiple Injections

2002-03-04
2002-01-0959
A computational optimization study was performed for a direct-injection diesel engine using a recently developed 1-D-KIVA3v-GA (1-Dimensional-KIVA3v-Genetic Algorithm) computer code. The code performs a full engine cycle simulation within the framework of a genetic algorithm (GA) code. Design fitness is determined using a 1-D (one-dimensional) gas dynamics code for the simulation of the gas exchange process, coupled with the KIVA3v code for three-dimensional simulations of spray, combustion and emissions formation. The 1-D-KIVA3v-GA methodology was used to simultaneously investigate the effect of eight engine input parameters on emissions and performance for four cases, which include cases at 2500 RPM and 1000 RPM, with both simulated at high-load and low-load conditions.
Technical Paper

The Influence of Physical Input Parameter Uncertainties on Multidimensional Model Predictions of Diesel Engine Performance and Emissions

2000-03-06
2000-01-1178
Multidimensional models require physical inputs about the engine operating conditions. This paper explores the effects of unavoidable experimental uncertainties in the specification of important parameters such as the start of injection, duration of injection, amount of fuel injected per cycle, gas temperature at IVC, and the spray nozzle hole diameter. The study was conducted for a Caterpillar 3401 heavy-duty diesel engine for which extensive experimental data is available. The engine operating conditions include operation at high and low loads, with single and double injections. The computations were performed using a modified version of the KIVA3V code. Initially the model was calibrated to give very good agreement with experimental data in terms of trends and also to a lesser degree in absolute values, over a range of operating conditions and injection timings.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

Intake and Cylinder Flow Modeling with a Dual-Valve Port

1993-03-01
930069
Intake port and cylinder flow have been modeled for a dual intake valve diesel engine. A block structured grid was used to represent the complex geometry of the intake port, valves, and cylinder. The calculations were made using a pre-release version of the KIVA-3 code developed at Los Alamos National Laboratories. Both steady flow-bench and unsteady intake calculations were made. In the flow bench configuration, the valves were stationary in a fully open position and pressure boundary conditions were implemented at the domain inlet and outlet. Detailed structure of the in-cylinder flow field set up by the intake flow was studied. Three dimensional particle trace streamlines reveal a complex flow structure that is not readily described by global parameters such as swirl or tumble. Streamlines constrained to lie in planes normal to the cylinder axis show dual vortical structures, which originated at the valves, merging into a single structure downstream.
Technical Paper

Improvements in 3-D Modeling of Diesel Engine Intake Flow and Combustion

1992-09-01
921627
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation and the intake flow process. Improved and/or new submodels which have been completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops.
X