Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

2005-10-24
2005-01-3741
Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1328 species and 5835 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation.
Technical Paper

Autoignition Chemistry of the Hexane Isomers: An Experimental and Kinetic Modeling Study

1995-10-01
952406
Autoignition of the five distinct isomers of hexane is studied experimentally under motored engine conditions and computationally using a detailed chemical kinetic reaction mechanism. Computed and experimental results are compared and used to help understand the chemical factors leading to engine knock in spark-ignited engines and the molecular structure factors contributing to octane rating for hydrocarbon fuels. The kinetic model reproduces observed variations in critical compression ratio with fuel structure, and it also provides intermediate and final product species concentrations in much better agreement with observed results than has been possible previously. In addition, the computed results provide insights into the kinetic origins of fuel octane sensitivity.
Technical Paper

Natural Gas Autoignition Under Diesel Conditions: Experiments and Chemical Kinetic Modeling

1994-10-01
942034
The effects of ambient gas thermodynamic state and fuel composition on the autoignition of natural gas under direct-injection diesel conditions were studied experimentally in a constant-volume combustion vessel and computationally using a detailed chemical kinetic model. Natural gas compositions representative of variations observed across the U.S. were considered. These results extend previous observations to more realistic natural gas compositions and a wider range of thermodynamic states that include the top-dead-center conditions in the natural gas version of the 6V-92 engine being developed by Detroit Diesel Corporation. At temperatures less than 1200 K, the experiments demonstrated that the ignition delay of natural gas under diesel conditions has a dependence on temperature that is Arrhenius in character and a dependence on pressure that is close to first order.
Technical Paper

The Autoignition Chemistry of Paraffinic Fuels and Pro-Knock and Anti-Knock Additives: A Detailed Chemical Kinetic Study

1991-10-01
912314
A numerical model is used to examine the chemical kinetic processes leadING to knocking in spark-ignition internal combustion engines. The construction and validation of the model is described in detail, including low temperature reaction paths involving alkylperoxy radical isomerization. The numerical model is applied to C1 to C7 paraffinic hydrocarbon fuels, and a correlation is developed between the Research Octane Number (RON) and the computed time of ignition for each fuel. Octane number is shown to depend on the rates of OH radical production through isomerization reactions, and factors influencing the rate of isomerization such as fuel molecule size and structure are interpreted in terms of the kinetic model. knock behavior of fuel mixtures is examined, and the manner in which pro-knock and anti-knock additives influence ignition is studied numerically. The kinetics of methyl tert-butyl ether (MTBE) is discussed in particular detail.
Technical Paper

Chemical Kinetic Modeling of Combustion of Practical Hydrocarbon Fuels

1989-04-01
890990
The development of detailed chemical kinetic reaction mechanisms for analysis of autoignition and knocking of complex hydrocarbon fuels is described. The wide ranges of temperature and pressure which are encountered by end gases in automobile engine combustion chambers result in extreme demands on the reaction mechanisms intended to describe knocking conditions. The reactions and chemical species which are most important in each temperature and pressure regime are discussed, and the validation of these reaction mechanisms through comparison with idealized experimental results is described. The use of these mechanisms is illustrated through comparisons between computed results and experimental data obtained in actual knocking engines.
Technical Paper

Detailed Kinetic Modeling of Autoignition Chemistry

1987-11-01
872107
The development of detailed chemical kinetic reaction mechanisms for analysis of autoignition and knocking of hydrocarbon fuels is described. In particular, kinetic processes of concern for the oxidation of complex hydrocarbon fuel molecules are emphasized. The wide ranges of temperature and pressure which are encountered by end gases in automobile engine combustion chambers result in extreme demands on reaction mechanisms which are intended to describe knocking conditions and predict rates of combustion and ignition. The reactions and chemical species which are most important in each temperature and pressure regime are discussed, and the validation of these reaction mechanisms through comparison with idealized experimental results is described.
X