Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Longitudinal Vehicle Dynamics Modeling and Parameter Estimation for Plug-in Hybrid Electric Vehicle

2017-03-28
2017-01-1574
System identification is an important aspect in model-based control design which is proven to be a cost-effective and time saving approach to improve the performance of hybrid electric vehicles (HEVs). This study focuses on modeling and parameter estimation of the longitudinal vehicle dynamics for Toyota Prius Plug-in Hybrid (PHEV) with power-split architecture. This model is needed to develop and evaluate various controllers, such as energy management system, adaptive cruise control, traction and driveline oscillation control. Particular emphasis is given to the driveline oscillations caused due to low damping present in PHEVs by incorporating flexibility in the half shaft and time lag in the tire model.
Technical Paper

Air-to-fuel Ratio Modulation Experiments over a Pd/Rh Three-way Catalyst

2001-09-24
2001-01-3539
The benefits of deliberately modulating air-to-fuel ratio over a three-way catalyst are disputed. In this work, engine test cell experiments were carried out to assess the performance of a warmed-up Pd/Rh three-way catalyst. The objectives were threefold: first, to determine the best mode of operation; second, to determine if air-to-fuel ratio modulation enhances robustness to transient air-to-fuel ratio disturbances; third, to determine if the conversion efficiency can be manipulated by controlling the shape of the air-to-fuel ratio oscillation. It was observed that the highest conversion efficiency is obtained using a steady air-to-fuel ratio just rich of stoichiometric; however, this mode of operation lacks robustness with respect to transient disturbances and UEGO sensor errors. Robustness can be improved using an oscillating air-to-fuel ratio, but with a sacrifice in peak conversion efficiency.
Technical Paper

Report of NADDRG Friction Committee on Reproducibility of Friction Tests within and Between Laboratories

1993-03-01
930811
The present paper offers a status report on round-robin tests conducted with the participation of ten laboratories, with drawbead simulation (DBS) as the test method. The results showed that, in most laboratories, the coefficient of friction (COF) derived from the test is repeatable within an acceptable range of ±0.01. Repeatability between laboratories was less satisfactory. Five laboratories reported results within the desirable band, while some laboratories found consistently higher values. In one instance this could be traced to incomplete transfer of clamp forces to the load cell, in other instances inaccurate test geometry is suspected. Therefore, numerical values of COF from different laboratories are not necessarily comparable. Irrespective of these inter-laboratory variations, the relative ranking of lubricants was not affected, and data generated within one laboratory can be used for relative evaluations and for a resolution of production problems.
Technical Paper

An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software

2018-04-03
2018-01-1075
Machine learning (ML) plays an ever-increasing role in advanced automotive functionality for driver assistance and autonomous operation; however, its adequacy from the perspective of safety certification remains controversial. In this paper, we analyze the impacts that the use of ML within software has on the ISO 26262 safety lifecycle and ask what could be done to address them. We then provide a set of recommendations on how to adapt the standard to better accommodate ML.
Technical Paper

Damage and Formability of AKDQ and High Strength DP600 Steel Tubes

2005-04-11
2005-01-0092
Using standard tensile testing methods, the material properties of AKDQ and DP600 steels tubes along the axial direction were determined. A novel in-situ optical strain mapping system ARAMIS® was utilized to evaluate the strain distribution during tensile testing along the axial direction. Microstructural and damage characterization was carried out using microscopy and image analysis techniques to compare the damage evolution and formability of both materials. Failure in both steels was observed to occur via a ductile failure mode. AKDQ was found to be the more formable material as it can achieve higher strains, total elongations and thinning prior to failure than the higher strength DP600.
Journal Article

Modes of Automated Driving System Scenario Testing: Experience Report and Recommendations

2020-04-14
2020-01-1204
With the widespread development of automated driving systems (ADS), it is imperative that standardized testing methodologies be developed to assure safety and functionality. Scenario testing evaluates the behavior of an ADS-equipped subject vehicle (SV) in predefined driving scenarios. This paper compares four modes of performing such tests: closed-course testing with real actors, closed-course testing with surrogate actors, simulation testing, and closed-course testing with mixed reality. In a collaboration between the Waterloo Intelligent Systems Engineering (WISE) Lab and AAA, six automated driving scenario tests were executed on a closed course, in simulation, and in mixed reality. These tests involved the University of Waterloo’s automated vehicle, dubbed the “UW Moose”, as the SV, as well as pedestrians, other vehicles, and road debris.
X