Refine Your Search

Topic

Search Results

Technical Paper

Reducing Emissions and Improving Fuel Economy by Optimized Combustion of Alternative Fuels

2011-10-06
2011-28-0050
Alternative fuels, especially fuels based on biological matter, are gaining more and more attention. Not only as a pure substitute of oil but also in terms of a possibility for further reduction in emission and as an option to improve the global CO2 balance. For improving the engine performance (emissions, fuel consumption, torque and drivability) the adjustment of fuel injection, the fuel evaporation process and the combustion process itself is paramount. In order to exploit the full potential of alternative fuels excellent knowledge of the fuel properties, including the impact on ignition and flame propagation, is required. This needs suitable tools for analysis of the fuel injection and combustion process. These tools have to support the optimization of the combustion system and the dynamic engine calibration for lowest emissions and most efficient use of fuel. As the term “Alternative Fuels” covers a very wide area a brief overview on available fuel types will be made.
Technical Paper

CAE Process for Developing Cylinder Head Design Including Statistical Correlation and Shape Optimization

2010-04-12
2010-01-0494
Design of cylinder heads involves complex constraints that must satisfy thermal, strength, performance, and manufacturing requirements which present a great challenge for successful development. During development of a new highly loaded cylinder head, CAE methods predicted unacceptable fatigue safety factors for the initial prototype design. Hydropulsator component testing was undertaken and the results were correlated with the analysis predictions using a statistical method to calculate failure probability. Shape optimization was undertaken to improve high cycle fatigue safety in vulnerable regions of the cylinder head water jacket for the subsequent design release. The optimization process provided more efficient design guidance than previously discovered through a traditional iterative approach. Follow-on investigations examined other shape optimization software for fatigue improvement in the cylinder head.
Technical Paper

Advanced Methods for Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Optimization and Prediction During Dynamic Warm Up Tests (EDC)

2013-01-09
2013-26-0113
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e.g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure consisting of a number of global data-based sub-models is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
Technical Paper

OBD Algorithms: Model-based Development and Calibration

2007-10-30
2007-01-4222
The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Optimizing Validation Programs with the Load Matrix Method

2004-10-26
2004-01-2668
The AVL Load Matrix is a systematic approach to optimize durability and reliability test programs. It is based on component-specific test acceleration factors and uses damage models as well as statistics. Using the Load Matrix approach helps to achieve complete test programs while avoiding unrealistic over-testing. The paper describes the Load Matrix concept and structure as well as the process of setting up the Load Matrix for a system or component. Examples are provided on damage models, and the procedure to estimate the acceleration factors is discussed.
Technical Paper

Integrated 1-D Tools for Modeling Vehicle Thermal Management System

2004-11-16
2004-01-3406
The need to improve the engine performance and fuel consumption subject to ever more stringent emission standard spar the interest in the aspects of understanding and quantifying the thermal behavior of engine components and systems. Considering these points during the design of the vehicle thermal management system based on test would consume far too many resources. Fortunately, the simulation tools have become more prominent in the pre-prototype phase of the vehicle development process and they had reached a mature stage; where they can contribute successfully to a significant extend to meet the vehicle development targets. In this work, a methodology to model the Vehicle Thermal Management System (VTMS) in order to understand and quantify its behavior has been developed. The partial systems under consideration are: the gas circuit, the cooling circuit, the lubrication circuit and the thermal capacitance of the engine structure under the vehicle driving conditions.
Technical Paper

Virtual Optimization of Vehicle and Powertrain Parameters with Consideration of Human Factors

2005-04-11
2005-01-1945
The rapidly growing complexity and the growing cross linking of powertrain components leads to longer development times, especially in the vehicle calibration process. The number of systems which need to be fitted to each other and the number of parameters to be calibrated in the particular systems are increasing tremendously. The extensive use of simulation promises to reduce the calibration effort by providing pre-optimized parameter sets. This paper describes a new simulation methodology by the interlinking of advanced vehicle simulation and evaluation tools, in particular the AVL-tools CRUISE, VSM and DRIVE. This methodology allows to semi automatically pre-optimize powertrain and vehicle parameters before hardware is involved. So far the pre-calibration of vehicle and powertrain parameters by simulation was not satisfying because of the missing of a reliable evaluation tool for the produced simulation results.
Technical Paper

Aspects of Cabin Fluid Dynamics, Heat Transfer, and Thermal Comfort in Vehicle Thermal Management Simulations

2005-05-10
2005-01-2000
Automobile manufacturers and suppliers are under pressure to develop more efficient thermal management systems as fuel consumption and emission regulations become stricter and buyers demand greater comfort and safety. Additionally, engines must be very efficient and windows must deice and defog quickly. These requirements are often in conflict. Moreover, package styling and cost constraints severely limit the design of coolant and air conditioning systems. Simulation-based design and virtual prototyping can ensure greater product performance and quality at reduced development time and cost. The representation of the vehicle thermal management needs a scalable approach with 0-D, 1-D, and 3-D fluid dynamics, multi-body dynamics, 3-D structural analysis, and control unit simulation capabilities. Different combinations and complexities of the simulation tools are required for various phases of the product development process.
Technical Paper

Numerical Studies for De-Icing Validation

2005-04-11
2005-01-1883
The de-icing process of the windscreen is a demanding problem in car climatization. In the first stages of the development procedure of air ducts, the numerical simulation plays an important role due to economy of time and money. Unfortunately, the available numerical methods for the generation of the computational grid and the simulation of the de-icing process are very time consuming and are complicated in handling. Therefore normally the quality of the de-icing process is evaluated with simplified simulation procedures or even with measurements late in the design process and necessary modifications are again time and cost consuming. The aim of this paper is to describe new methods for the de-icing simulation that will reduce meshing and calculation time by showing accurate results.
Technical Paper

Catalytic Converters in a 1d Cycle Simulation Code Considering 3d Behavior

2003-03-03
2003-01-1002
The objective of this study to introduce the newly developed Discrete Channel Method (DCM) as a fast and efficient method for the prediction of the 3d and transient behavior of honeycomb-type catalytic converters in automotive applications. The approach is based on the assumption that the regions between the channels are treated as a reactor with a homogeneously distributed heat source due to chemical conversion. Therefore, each radial direction can be described by a center, a boundary and only a few intermediate channels between them. The discrete channels are described by transient, 1d conservation equations that characterize the behavior of channels at different radial positions. The heat entering and leaving each discrete channel is evaluated by the gradients of the temperature field in conjunction with the heat conductivity of the substrate. The approach is validated by experimental data and serves as a module in the thermodynamic and engine analysis design tool BOOST.
Technical Paper

Using Simulation and Optimization Tools to Decide Engine Design Concepts

2000-03-06
2000-01-1267
To meet the future demands on internal combustion engines regarding efficiency emissions and durability all design parameters must be optimized together. As a result of progress in material engineering fuel injection technology turbo charging technology exhaust gas after treatment there arise a multiplicity of possible parameters, such as: design parameters (compression ratio, dimensioning depending on peak firing pressure and mean effective pressure), injection system (rate shaping, split injection, injection pressure, hole diameter), air management (turbo charging with or without VTG, EGR rate) combustion optimization (timing, air access ratio). The interaction of all these parameters can not be over-looked without simulation and optimization tools. This is valid for the concept layout, the optimization and the application process later on.
Technical Paper

Simulation Aided Process for Developing Powertrains

2000-12-01
2000-01-3161
For the development of complex control algorithms and strategies the engine and powertrain test bed offers a number of advantages over the development in the prototype vehicle. The paper discusses how state-of-the-art simulation techniques can contribute to a continuous development process, which is based upon offline simulation using hardware in the loop, the utilization of modern test bed technology up to vehicle adjustment. The integration of hardware-in-the-loop testing together with vehicle and transmission simulation on the testbed allows to speed up the optimization of fuel consumption, emissions and driveability in an early stage in the development process. The available software tools are presented and application examples are given.
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
Technical Paper

An integrated 1D/3D workflow for analysis and optimization of injection parameters of a diesel engine

2001-09-23
2001-24-0004
The present contribution gives an overview of the use of different simulation tools for the optimization of injection parameters of a diesel engine. With a one-dimensional tool, the behavior of the mechanics and fluid dynamics of the entire injection system is calculated. This simulation provides information on the dynamic needle lift, injection rates, pressures, etc. The flow within the injector is simulated using a three-dimensional CFD tool. By use of a two-phase model, it is possible to analyze the cavitating flow inside the injector and to calculate the effective nozzle hole area as well as the exit flow characteristics. Mixture formation, combustion and pollutant formation simulation is performed adopting three-dimensional CFD. In order to provide the initial and boundary conditions for the engine CFD simulation and to optimize the engine cycle performance a one-dimensional tool is adopted.
Technical Paper

Analytical Wall-Function Strategy for the Modelling of Turbulent Heat Transfer in the Automotive CFD Applications

2019-04-02
2019-01-0206
In contrast to the well-established “standard” log-law wall function, the analytical wall function (AWF) as an advanced modelling approach has not been extensively used in the industrial computational fluid dynamics (CFD) applications. As the model was originally developed aiming at computations on relatively coarse meshes, potential stability issues may arise due to the pressure-gradient sensitivity if employing locally inappropriate mesh layers, typically associated with the complex geometry details. This work evaluates performance of the thermal AWF, as proposed by Suga [4], in conjunction with the main flow field computed employing the k-ζ-f turbulence model and the hybrid wall treatment (denoted as AWF-e) within the Reynolds-averaged Navier-Stokes (RANS) framework.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Technical Paper

Combustion System Development of a High Performance and Fuel Efficient TGDI Engine Guided by CFD Simulation and Test

2017-10-08
2017-01-2282
A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
X