Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Diesel Emission Control in Review

2009-04-20
2009-01-0121
This summary covers representative developments from 2008 in diesel regulations, engine technology, and NOx, particulate matter (PM), and hydrocarbon (HC) control. Europe is finalizing the Euro VI heavy-duty (HD) regulations for 2013 with the intent of technologically harmonizing with the US. A new particle number standard will be adopted. California is considering tightening the light-duty fleet average to US Tier 2 Bin 2 levels, and CO2 mandates are emerging in Europe for LD, and in the US for all vehicles. LD engine technology is focused on downsizing to deliver lower CO2 emissions, enabled by advances in boost and EGR (exhaust gas recirculation). Emerging concepts are shown for attaining Bin 2 emission levels. HD engines will make deNOx systems optional for even the tightest NOx standards, but deNOx systems enable much lower fuel consumption levels and will likely be used. NOx control is centered on SCR (selective catalytic reduction) for diverse applications.
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Journal Article

Diesel Emission Control in Review

2008-04-14
2008-01-0069
This summary covers the developments from 2007 in diesel regulations, engine technology, and NOx and PM control. Regulatory developments are now focused on Europe, where heavy-duty regulations have been proposed for 2013. The regulations are similar in technology needs to US2010. Also, the European Commission proposed the first CO2 emission limits of 130 g/km, which are nearly at parity to the Japanese fuel economy standards. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is centered on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation and system optimization. LNT (lean NOx traps) durability is quantified, and performance enhanced with a sulfur trap.
Journal Article

Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters

2008-04-14
2008-01-0328
Diesel particulate filters are expected to be used on most passenger car applications designed to meet coming European emission standards, EU5 and EU6. Similar expectations hold for systems designed to meet US Tier 2 Bin 5 standards. Among the various products oxide filter materials, such as cordierite and aluminum titanate, are gaining growing interest due to their unique properties. Besides the intrinsic robustness of the filter products a well designed operating strategy is required for the successful use of filters. The operating strategy is comprised of two elements: the soot estimation and the regeneration strategy. In this paper the second element is discussed in detail by means of theoretical considerations as well as dedicated engine bench experiments. The impact the key operating variables, soot load, exhaust mass flow, oxygen content and temperature, have on the conditions inside the filter are discussed.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Journal Article

Vehicular Emissions in Review

2013-04-08
2013-01-0538
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2012. First, the paper covers the key regulatory developments in the field, including finalized criteria pollutant tightening in California; and in Europe, the development of real-world driving emissions (RDE) standards. The US finalized LD (light-duty) greenhouse gas (GHG) regulation for 2017-25. The paper then gives a brief, high-level overview of key developments in LD and HD engine technology, covering both gasoline and diesel. Marked improvements in engine efficiency are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are just starting to demonstrate 50% brake thermal efficiency. NOx control technologies are then summarized, including SCR (selective catalytic reduction) with ammonia, and hydrocarbon-based approaches.
Journal Article

Impact of Ceramic Substrate Web Thickness on Emission Light-Off, Pressure Drop, and Strength

2008-04-14
2008-01-0808
The effect of web thickness on emission performance, pressure drop, and mechanical properties was investigated for a series of catalyzed ceramic monolith substrates having cell densities of 900, 600 and 400 cpsi. As expected, thinner webs provide better catalyst light off performance and lower pressure drop, but mechanical strength generally decreases as web thickness is reduced. Good correlations were found between emission performance and geometric parameters based on bare and coated parts. An improved method for estimating the effects of cell density and web thickness on bare substrate strength is described, and the effect of porosity on material strength is also examined. New mechanical strength correlations for ceramic honeycombs are presented. The availability of a range of ceramic product geometries provides options for gasoline exhaust emission design and optimization, especially where increased levels of performance are desired.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Study on Catalyzed-DPF for Improving the Continuous Regeneration Performance and Fuel Economy

2007-04-16
2007-01-0919
It is a big challenge how to satisfy both the purification of exhaust gas and the decrease of fuel penalty, that is, carbon-dioxide emission. Regarding the Diesel Particulate Filter (DPF) applied in the diesel after-treatment system, it must be effective for lowering the fuel penalty to prolong the interval and reduce the frequency of the DPF regeneration operation. This can be achieved by a DPF that has high Particulate Matter (PM) mass limit and high PM oxidation performance that is enough to regenerate the DPF continuously during the normal running operation. In this study, the examination of the pore structure of the wall of a DPF that could expand the continuous regeneration region in the engine operation map was carried out. Several porous materials with a wide range of pore structure were prepared and coated with a Mixed Oxide Catalyst (MOC). The continuous regeneration performance was evaluated under realistic conditions in the exhaust of a diesel engine.
Technical Paper

Three-Way-Catalyst Modeling - A Comparison of 1D and 2D Simulations

2007-04-16
2007-01-1071
In this paper we present a comparison of two different approaches to model three-way catalyst. First, a numerical sample case simulating light-off is used to compare the 1D and the 2D models. The advantages of each code are discussed with respect to required input data, detail level of the output, comparability, and computation time. Thus, the 2D model reveals significant radial temperature gradients inside the monolith during light-off. In a second step, the 2D model is compared with experimental data. One set of data consists of an air/fuel ratio varying sweep at isothermal conditions. Another set was gained by emission measurements during a real driving MVEG tests with varying substrate cell density & inlet conditions. From these experiments the applicability of the model to numerical parameter studies is discussed.
Technical Paper

Wall-scale Reaction Models in Diesel Particulate Filters

2007-04-16
2007-01-1130
Following the successful market introduction of diesel particulate filters (DPFs), this class of emission control devices is expanding to include additional functionalities such as gas species oxidation (such as CO, HC and NO), storage phenomena (such as NOx and NH3 storage) to the extent that we should today refer not to DPFs but to Multifunctional Reactor Separators. This trend poses many challenges for the modeling of such systems since the complexity of the coupled reaction and transport phenomena makes any direct general numerical approach to require unacceptably high computing times. These multi-functionalities are urgently needed to be incorporated into system level emission control simulation tools in a robust and computationally efficient manner. In the present paper we discuss a new framework and its application for the computationally efficient implementation of such phenomena.
Technical Paper

Soot Oxidation Kinetics in Diesel Particulate Filters

2007-04-16
2007-01-1129
Direct catalytic soot oxidation is expected to become an important component of future diesel particulate emission control systems. The development of advanced Catalytic Diesel Particulate Filters (CDPFs relies on the interplay of chemistry and geometry in order to enhance soot-catalyst proximity. An extensive set of well-controlled experiments has been performed to provide direct catalytic soot oxidation rates in CDPFs employing small-scale side-stream sample exposure. The experiments are analyzed with a state-of-the-art diesel particulate filter simulator and a set of kinetic parameters are derived for direct catalytic soot oxidation by fuel-borne catalysts as well as by catalytic coatings. The influence of soot-catalyst proximity, on catalytic soot oxidation is found to be excellently described by the so-called Two-Layer model, developed previously by the authors.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Advanced Catalyst Coatings for Diesel Particulate Filters

2008-04-14
2008-01-0483
Novel catalytic coatings with a variety of methods based on conventional and novel synthesis routes are developed for Diesel Particulate Filters (DPFs). The developed catalytic composition exhibits significant direct soot oxidation as evaluated by reacting mixtures of diesel soot and catalyst powders in a thermogravimetric analysis apparatus (TGA). The catalyst composition was further deposited on oxide and non-oxide porous filter structures that were evaluated on an engine bench with respect to their filtration efficiency, pressure drop behavior and direct soot oxidation activity under realistic conditions. The effect of the catalyst amount on the filtration efficiency of non-oxide filters was also investigated. Evaluation of the indirect soot oxidation was conducted on non-oxide catalytic filters coated with precious metal.
Technical Paper

Diesel Combustion Control with Closed-Loop Control of the Injection Strategy

2008-04-14
2008-01-0651
Current and future emission legislations require a significant reduction of engine-out emissions for Diesel engines. For a further reduction of engine-out emissions, different measures are necessary such as: Especially an advanced emission and closed-loop combustion control has gained increased significance during the past years.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
X