Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers

2006-11-07
2006-01-3083
Advances in the past decade of the energy and power densities of lithium-ion based batteries for hybrid electric vehicles and various consumer applications have been substantial. Rechargeable high rate lithium-ion batteries are now exceeding 6 kW/kg for short discharge times (<15 seconds). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at >1.0 kW/kg). Some preliminary test data on a rechargeable lithium-ion polymer battery is presented. The use of high rate rechargeable lithium-ion batteries as a function of onboard power, electric laser power level, laser duty cycle, and total mission time is presented. A number of thermal management system configurations were examined to determine system level weight impacts. Lightweight configurations would need a regenerative thermal energy storage subsystem.
Technical Paper

Business and Process Improvements in the Investment Casting Sector

1998-06-02
981855
The Engine Supplier Base Initiative (ESBI) is a joint Air Force/Industry cooperative agreement aimed at achieving affordable precision investment cast airfoil and large structural components for man-rated gas turbine engines. The ESBI program will obtain these goals through the implementation of business and technology improvements with specific focus on increased product quality and reduced cycle time. This program has brought together competitors in the business to solve sector wide problems. This paper presents the framework of the teaming approach as well as results achieved in quality and cycle time improvements through technical and business process improvements.
Technical Paper

Effects of Transient Power Extraction on an Integrated Hardware-in-the-Loop Aircraft/Propulsion/Power System

2008-11-11
2008-01-2926
As aircraft continue to increase their power and thermal demands, transient operation of the power and propulsion subsystems can no longer be neglected at the aircraft system level. The performance of the whole aircraft must be considered by examining the dynamic interactions between the power, propulsion, and airframe subsystems. Larger loading demands placed on the power and propulsion subsystems result in thrust, speed, and altitude transients that affect the aircraft performance and capability. This results in different operating and control parameters for the engine that can be properly captured only in an integrated system-level test. While it is possible to capture the dynamic interactions between these aircraft subsystems by using simulations alone, the complexity of the resulting system model has a high computational cost.
Technical Paper

Quantitative Methods for Determining U.S. Air Force Crew Cushion Comfort

2006-07-04
2006-01-2339
The detrimental effects of prolonged sitting during long-duration flights include deep vein thrombosis, pressure sores, and decreased awareness and performance. However, the cushion is often the only component of the ejection seat system that can be modified to mitigate these effects. This study investigated the long-duration effects of sitting in four ejection seat cushions over eight hours. Subjective comfort survey data and cognitive performance data were gathered along with comparative objective data, including seated pressures, muscular fatigue levels, and lower extremity oxygen saturation. Peak seated pressures ranged from 1.22–3.22 psi. Oxygen saturation in the lower extremities decreased over the eight hours. Cognitive performance increased over time regardless of cushion with the exception of the dynamic cushion, which induced a decrease in performance for females.
Technical Paper

Investigations of the Performance of Ejection Seat Cushions for Safety and Comfort

2005-10-03
2005-01-3263
Two series of tests were conducted to investigate the performance of ejection seat cushions for safety and comfort, respectively. In the safety study, seven operational and prototype cushions were tested on the vertical deceleration tower, where the cushions were placed between the seat pan and the occupant (a 50th percentile Hybrid III manikin) and subjected to +Gz impact at 8, 10, and 12 g, respectively. In the comfort investigation, twenty volunteer subjects (12 females and 8 males) with a range of anthropometry were tested on four operational and prototype cushions over eight-hour durations. The safety performance of a cushion is evaluated by the impact transmissibility from the carriage acceleration to the peak lumbar load, whereas the sitting comfort performance is assessed in terms of the peak contact pressure and subjective survey data.
Technical Paper

Autonomous Flight Control Development on the Active Aeroelastic Wing Aircraft

2004-11-02
2004-01-3116
A highly modified F/A-18 aircraft is being used to demonstrate that aeroelastic wing twist can be used to roll a high performance aircraft. A production F/A-18A/B/C/D aircraft uses a combination of aileron deflection, differential horizontal tail deflection and differential leading edge flap deflection to roll the aircraft at various Mach numbers and altitudes. The Active Aeroelastic Wing program is demonstrating that aeroelastic wing twist can be used in lieu of the horizontal tail to provide autonomous roll control at high dynamic pressures. Aerodynamic and loads data have been gathered from the Phase I AAW flight test program. Now control laws have been developed to exploit aeroelastic wing twist and provide autonomous flight control of the AAW aircraft during Phase II. Wing control surfaces are being deflected in non-standard ways to create aeroelastic wing twist and develop the required rolling moments without use of the horizontal tail.
Technical Paper

The Fatigue Avoidance Scheduling Tool: Modeling to Minimize the Effects of Fatigue on Cognitive Performance

2004-06-15
2004-01-2151
Operator fatigue and time-of-day induced variations in cognitive effectiveness can lead to lapses in attention, slowed reactions, and impaired reasoning and decision-making that has been shown to contribute to accidents, incidents and errors in a host of industrial and military settings. During the past three years, the US Air Force has sponsored the development of a model of human fatigue and circadian variation and a scheduling tool based upon the model that will be used to minimize aircrew fatigue. The initial test version of the tool has passed review by the operational wings of the AF and a final operational product is in advanced development and validation. The software was developed by SAIC and NTI and is called the Fatigue Avoidance Scheduling Tool (FAST™). This fatigue forecasting system is being developed and tested by NTI under a small business innovative research (SBIR) grant from the US Air Force, now in the third year of a three-year program.
Technical Paper

Bracing Position for Side-Facing Seats During Impact

2000-04-11
2000-01-2111
Side-facing seats are present in a variety of aircraft. During impact, these seats load the occupants in a different manner than typical forward-facing seats, namely the occupants are exposed to a lateral impact. In order to minimize injury during a crash, it is necessary for the occupants to prepare themselves and be situated in a position for maximum protection. In an effort to understand occupant initial position in a side-facing seat, a 3-D rigid-body model was developed of a side-facing seat configuration with three occupants, using the Articulated Total Body (ATB) program. The occupants were seated side-by-side in webbed troop-style seats, and each occupant was restrained by a lap belt. Three different initial occupant positions were studied, and each of the three occupants in a given simulation were seated in the same position. A 10 G lateral pulse with an approximate duration of 200 ms was applied to the vehicle.
Technical Paper

AC Impedance Characterization and Life Testing of Lithium-Ion Batteries

1999-04-06
1999-01-1402
As part of the DoD/NASA Lithium-Ion and More-Electric Aircraft (MEA) development programs, in-house life-testing and performance characterization of lithium-ion batteries of sizes 1-20 amp-hours (Ah) were performed. Using AC impedance spectroscopy, the impedance behavior of lithium-ion cells with respect to temperature, cycle number, electrode, and state-of-charge was determined. Cell impedance is dominated by the positive (cathode) electrode, increases linearly with cycle number, and exponentially increases with decreasing temperature. From cell performance testing, we have seen the cell behavior is extremely sensitive to the ambient temperature. Preliminary battery performance results as well as AC impedance and life cycle test results are presented below.
Technical Paper

External Condenser Design for Cooling of Rotating Heat Pipe in MEA Application

1999-04-06
1999-01-1360
Rotating Heat Pipe (RHP) technolog y is being developed for high speed (>20 krpm) regimes of electric motor/generator cooling. The motivation for this research is the potential application of the high speed RHPs for the thermal management of advanced rotating electrical machines. The passive nature and relatively simple features of this device are attractive for the removal of waste heat from the rotors of electric machines. Interesting air-cooling experimental results of two high speed RHPs designed, fabricated and tested at AFRL are presented here. Emphasis is made on external heat removal concepts useful for cooling the RHP condenser in order to be successful in promoting this technology to real world problems.
Technical Paper

F-16 Battery/Charger Evaluation

1999-08-02
1999-01-2486
As the maintenance and disposal costs of aircraft batteries have risen, it has become critical to increase battery lifetime and to reduce maintenance cycles. This has led to the development of charging techniques designed to increase battery life while continuing to satisfy battery performance requirements. However, the cost of battery chargers accounts for 60% to 80% of the battery/charger system cost. AFRL/PRPB has initiated an in-house project to evaluate F-16 batteries using the existing F-16 charger. The objective is to determine which batteries can pass all F-16 performance and lifetime requirements using this charger. Several batteries were procured from several sources and two F-16 chargers are on loan to us from Sacramento/ALC. Depending on the outcome of this phase the project may be extended to include other aircraft and other chemistries such as Nickel-Metal Hydride and Lithium-Ion. Results to date and future plans will be discussed in this paper.
Technical Paper

Lithium-Ion Performance Testing and AC Impedance Characterization

1999-08-02
1999-01-2591
The performance and life of lithium-ion batteries is highly dependent on factors such as temperature, charge/ discharge rate, depth-of-discharge (DOD), charge cut-off voltage, and battery design. The purpose of this on-going investigation is to characterize the state-of-the-art in lithium-ion battery performance and life as a function of some of these factors. Cycle life data on 18650 cells as well as a four cell series connected 20 Ahr lithium-ion battery (16.4 volt) is presented. External cell temperatures as a function of discharge rate and location for 20 Ahr lithium-ion cell are given. Preliminary ac impedance results for the 20 Ahr cell are also given.
X