Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
Technical Paper

Versatile NC Part Programs for Automated Fastening Systems in Pulsed Assembly Lines

2011-10-18
2011-01-2771
Pulsed assembly lines are providing an enormous potential to the aviation industry, especially in terms of reduced lead times, optimized asset utilization and an increased ratio of value adding processes. As it comes near to flow manufacturing the realization of a pulsed assembly line leads to special requirements to the use of NC programs for automated drilling and fastening processes, especially as a result of the unique part positions upon each pulse and concerning the balancing of the work onto several serialized fastening machines. The key to those challenges are versatile NC part programs that eliminate the need for any additionally written NC programs by self-adapting onto the concrete situation within the working areas of the production line.
Technical Paper

Reducing Energy Use in Aircraft Component Manufacture - Applying Best Practice in Sustainable Manufacturing

2011-10-18
2011-01-2739
Rising energy costs and increased regulation in recent years have caused industrialists to investigate how to apply ‘energy efficiency’ to their manufacturing operations. As well as reducing operating costs, the benefits of a ‘green’ image as a market differentiator are beginning to be realised. The literature describes the successful implementation of a variety of approaches to energy reduction, with particular focus on energy intensive industries (such as foundries) and on improvements to building services (such as lighting). However, a systematic approach to applying sustainable practices to the manufacturing processes involved in the production of high value products, such as aircraft, is noticeably absent. This paper describes how a number of sustainable manufacturing approaches have been combined, enhanced and applied to the shop floor of a manufacturing facility in the UK responsible for the production of large component assemblies for the aerospace industry.
Technical Paper

Eco-efficient Materials for Aircraft Application

2011-10-18
2011-01-2742
Due to the importance of fulfilling the actual and upcoming environmental legislation, it is an Airbus main target to develop eco-efficient materials. Under consideration of the economical effects, these processes will be implemented into the production line. This paper gives an overview of Airbus and its partners research work, the results obtained within the frame of the European funded, integrated technology demonstrator (ITD) ECO Design for Airframe. This ITD is part of the joint technology initiative Clean Sky. Developments with different grade of maturity from “upstream” as the investigation of materials from renewable recourses up to materials now in use in production as low volatile organic compounds cleaner are under investigation. As a basis for future eco-efficient developments an approach for a quantitative life cycle assessment will be demonstrated.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Interface Management in Wing-Box Assembly

2011-10-18
2011-01-2640
Gaps between structural components have been a common problem since the start of aviation. This has usually been caused by the manufacturing tolerances of the components in question not being sufficiently tight. An example where such issues arise is in the assembly of a wing skin to rib feet to form an aircraft wing-box, where it is commonly found that, whilst some rib feet are in contact with the wing skin, others are spaced from it. Yet a strong connection between the wing skin and the rib feet is important to maintain the structural strength of the wing-box. To eliminate the existing gaps, the current approach, used in many manufacturing production lines, involves filling in the gaps to the required shape by applying liquid or solid shim to the rib feet. This is a relatively long and expensive process. To overcome these current inherent difficulties in interface management, a method to eliminate the shimming requirement between component interfaces is presented.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Technical Paper

Innovation Readiness: Past and Current Drivers in Aeronautical Engineering

2011-10-18
2011-01-2501
This paper proposes a rearview on aeronautical innovation, addresses some 2000-2010 new products, and suggests elements of future vision, serving passengers aspirations. Over 100 years, aeronautics brilliantly domesticated flight: feasibility, safety, efficiency, international travel, traffic volume and noise, allowing airlines to run a business, really connecting real people. Despite some maturations, new developments should extend the notion of passenger service. So far, turbofans became silent and widebodies opened ‘air-bus’ travel for widespread business, tourism or education. Today airports symbolize cities and vitalize regional economies. 2000-2010 saw the full double-decker, the new eco-friendly freighter and electronic ticketing. In technology, new winglets and neo classical engines soon will save short-range blockfuel. In systems and maintenance, integrated modular avionics and onboard data systems give new flexibility, incl by data links to ground.
Technical Paper

Software Complex for Riveting Process Simulation

2011-10-18
2011-01-2772
The presented paper describes the software complex developed in St. Petersburg Polytechnical University for AIRBUS aimed at simulation of aircraft assembly process. Previous version of this complex was described in [1].
Research Report

Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0

2021-08-20
EPR2021018
Increased production rates and cost reduction are affecting manufacturing in all mobility industry sectors. One enabling methodology that could achieve these goals in the burgeoning “Industry 4.0” environment is the optimized deterministic assembly (DA) approach. It always forms the same final structure and has a strong link to design-for-assembly and design-for-automation. The entire supply chain is considered, with drastic savings at the final assembly line level through recurring costs and lead-time reduction. Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0 examines the evolution of previous assembly principles that lead up to and enable the DA approach, related simulation methodologies, and undefined and unsolved links between these domains. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Unsettled Technology Domains in Industrial Smart Assembly Tools Supporting Industry 4.0

2020-09-29
EPR2020018
“Smart” refers to tools that are “specific, measurable, achievable, reasonable/realistic, and time bound.” Smart assembly tools are used in many industries, including automotive, aerospace, and space for measuring, inspecting, gauging, drilling, and installing all existing fastening systems. Inside the Industry 4.0 environment, these tools have a huge influence on Information and Communication Technology (ICT), assembly cost reduction, process control, and even the product and process quality. These four domains—and their undefined nature—are the focus of this SAE EDGE™ Research Report. The technical issues identified here need to be discussed, the goals clarifying the scope of the industry-wide need to be aligned, and the issues requiring standardization need prioritized. NOTE: SAE EDGE Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry.
Journal Article

Development of a Robotic System for Automated Drilling and Inspection of Small Aerostructures

2023-03-07
2023-01-1012
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Book

Care and Repair of Advanced Composites, Second Edition

2005-06-22
This second edition has been extensively updated to keep pace with the growing use of composite materials in commercial aviation. A worldwide reference for repair technicians and design engineers, the book is an outgrowth of the course syllabus that was developed by the Training Task Group of SAE's Commercial Aircraft Composite Repair Committee (CACRC) and published as SAE AIR 4938, Composite and Bonded Structure Technician Specialist Training Document. Topics new to this edition include: Nondestructive Inspection (NDI) Methods Fasteners for Composite Materials A Method for the Surface Preparation of Metals Prior to Adhesive Bonding Repair Design Although this book has been written primarily for use in aircraft repair other applications including marine and automotive are also covered.
X