Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Snow Particle Characterization. Part A: Statistics of Microphysical Properties of Snow Crystal Populations from Recent Observations Performed during the ICE GENESIS Project

2023-06-15
2023-01-1492
Measurements in snow conditions performed in the past were rarely initiated and best suited for pure and extremely detailed quantification of microphysical properties of a series of microphysical parameters, needed for accretion modelling. Within the European ICE GENESIS project, a considerable effort of natural snow measurements has been made during winter 2020/21. Instrumental means, both in-situ and remote sensing were deployed on the ATR-42 aircraft, as well as on the ground (ground station at ‘Les Eplatures’ airport in the Swiss Jura Mountains with ATR-42 overflights). Snow clouds and precipitation in the atmospheric column were sampled with the aircraft, whereas ground based and airborne radar systems allowed extending the observations of snow properties beyond the flight level chosen for the in situ measurements.
Technical Paper

Assessing Mixed-Phase Conditions during the ICE GENESIS Snow Measurement Campaign

2023-06-15
2023-01-1494
In the framework of the European ICE GENESIS project (https://www.ice-genesis.eu/), a field experiment was conducted in the Swiss Jura in January 2021 in order to characterize snow microphysical properties and document snow conditions for aviation industry purposes. Complementary to companion papers reporting on snow properties, this study presents an investigation on mixed-phase conditions sampled during the ICE GENESIS field campaign. Using in situ measurement of the liquid and total water content, the ice mass fraction is calculated and serves as a criteria to identify mixed-phase conditions. In the end, mixed phase conditions were identified in almost 30 % of the 3800 km long cloud samples included in the ICE GENESIS dataset. The data suggests that the occurrence of mixed-phase does not clearly depend on temperature in the 0 to -10 °C range, but varies significantly from one cloud system to another.
X