Refine Your Search

Search Results

Journal Article

Application of Local Mechanical Tensioning and Laser Processing to Modify the Residual Stress State and Microstructural Features of Multi-Pass HSLA Steel

2015-04-14
2015-01-0604
In a multi-pass weld, the development of residual stress to a large extent depends on the response of the weld metal, heat affected zone and parent material to complex thermo-mechanical cycles during welding. Previous investigations on this subject mostly focused on mechanical tensioning or heat treatment to modify the residual stress distribution in and around the weld. In this research, microstructural refinement with modification of residual stress state was attempted by applying post weld cold rolling followed by laser processing. The hardening of the weld metal was evaluated after welding, post weld cold rolling and post weld cold rolling followed by laser processing. The residual stress was determined non-destructively by using neutron diffraction. Hardness results showed evidence of plastic deformation up to 4 mm below the weld surface.
Journal Article

Applying Design for Assembly Principles in Computer Aided Design to Make Small Changes that Improve the Efficiency of Manual Aircraft Systems Installations

2014-09-16
2014-01-2266
The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time.
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2007-09-17
2007-01-3870
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robots to conduct assembly tasks within wing boxes - an area currently inaccessible for automation. The composite, single skin construction of aircraft structures presents new assembly challenges. Currently during box close-out it is necessary for aircraft fitters to climb into the wing box through small access panels and use manual or power tools to perform a variety of tasks. In future wing designs it may be that certain parts of the wing do not provide adequate access for manual assembly methods. It is also known that these manual interventions introduce health and safety concerns with their associated costs. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. Such a development has broader implications for aircraft design and assembly.
Technical Paper

Lug Cutting and Trimming of the Carbon Fibre Wing Panels of the Airbus A400m with Portable Hand Positioned Tools

2007-09-17
2007-01-3795
The Airbus A400m has carbon fibre wing panels on both the upper and lower surfaces. When manufactured, these panels come supplied with various lugs on the periphery of the panel. Some are used for lifting the panel, some are used for indexing the panel; however, all lugs must be removed at some time during wing build. Lug thickness varies from 4mm to 14mm; in addition, many lugs must be cut to a 2D profile rather than just straight. The main challenge of the project was to deliver a tool that was small, portable and compact, but that could also accurately slot thick carbon fibre panels, without de-lamination, leaving a good surface finish. The solution was an air powered routing hand tool that was mechanically guided along a 2D path using a cam profile. Special diamond grit cutters were used to cut the initial slot and reduce the machining forces to a bare minimum, with the finishing cut done using a PCD router bit to obtain a good surface finish.
Technical Paper

The Development of Automated Processes For The Manufacture of Cost-Effective Composite Wing-Boxes

1998-06-02
981839
The manufacturing cost of composite aerostructures is considerably higher than that of equivalent light-alloy ones. There are several reasons for this, but the transfer of the existing technology from military to civil aviation is identified as a major problem. Neither the designs, nor the methods of manufacture, are considered cost-effective when applied to very large, commercially competitive, structures. This problem was among those addressed within a multi-disciplinary, concurrent engineering project sponsored by BAe Airbus and the UK DTI. During the four year programme, alternative manufacturing technology was developed, and Pilot-plant equipment built. The Pilot-plant was successfully used to demonstrate that wing-box components can be more cheaply, more reliably, and more easily manufactured by simple, innovative, easily automated processes.
Technical Paper

Force Feedback for Assembly of Aircraft Structures

2010-09-28
2010-01-1872
Variability in composite manufacture and the limitations in positional accuracy of common industrial robots have hampered automation of assembly tasks within aircraft manufacturing. One way to handle geometry variations and robot compliancy is to use force control. Force control technology utilizes a sensor mounted on the robot to feedback force data to the controller system so instead of being position driven, i.e. programmed to achieve a certain position with the tool, the robot can be programmed to achieve a certain force. This paper presents an experimental case where a compliant rib is aligned to multiple surfaces using force feedback and an industrial robot system from ABB. Two types of ribs where used, one full size carbon fiber rib, and one smaller metal replica for evaluation purposes. The alignment sequence consisted of several iterative steps and a search procedure was implemented within the robot control system.
Technical Paper

Modular and Configurable Steel Structure for Assembly Fixtures

2010-09-28
2010-01-1873
This paper will present the latest development of a configurable and modular steel construction system for use in frameworks of flexible fixtures of the kind called Affordable Reconfigurable Fixtures (ART). Instead of a dedicated aircraft fixture, which is very time consuming and expensive, the ART fixtures enable affordable construction from a standard component kit, by solving the main drawbacks of traditional tooling. In early 2009 Airbus UK built the first steel modular fixture for the aerospace industry. The project was a partnership with DELFOi and Linköping University in a project called ReFlex, Reconfigurable Flexible Tooling. A paper was presented in the last year SAE conference which explained about the project in overall. The construction system called BoxJoint has recently been tested in some manufacturing areas at Airbus UK and also been applied in the production at Saab Aerospace Linköping Sweden.
Technical Paper

Automated Wing Drilling System for the A380-GRAWDE

2003-09-08
2003-01-2940
On Airbus aircraft, the undercarriage reinforcing is attached through the lower wing skin using bolts up to 1-inch in diameter through as much as a 4-inch stack up. This operation typically takes place in the wing box assembly jigs. Manual hole drilling for these bolts has traditionally required massive drill templates and large positive feed drill motors. In spite of these large tools, the holes must be drilled in multiple steps to reduce the thrust loads, which adds process time. For the new A380, Airbus UK wanted to explore a more efficient method of drilling these large diameter holes. Introducing automated drilling equipment, which is capable of drilling these holes and still allows for the required manual access within the wing box assembly jig, was a significant challenge. To remain cost effective, the equipment must be flexible and mobile, a llowing it to be used on multiple assemblies.
Technical Paper

An Algorithm for Assembly Centric Design

2002-09-30
2002-01-2634
This paper describes and demonstrates the use of an assembly centric design algorithm as an aid to achieving minimal hard tooling assembly concepts. The algorithm consists of a number of logically ordered design methodologies and also aids the identification of other enabling technologies. Included in the methodologies is an innovative systems analysis tool that enables the comparison of alternative assembly concepts, and the prediction and control of the total assembly error, at the outline stage of the design.
Technical Paper

Drilling Cost Model

2002-09-30
2002-01-2632
The paper describes a way of generating a cost model, which is aimed to compare different drilling processes. The development of this tool is a part of an ongoing European Union funded aircraft industry project called ADFAST (Automation for Drilling, Fastening, Assembly, Systems Integration, and Tooling). This part of the project involves 4 industrial partners, (Alenia, Airbus Espana SL, Airbus UK and Saab AB), 1 equipment developer (Novator AB) and 1 academic institute (Linkoping University). The model has been created to enable the benefits of an advanced system such as orbital drilling to be quantified. The model is able to generate a cycle time and a cost for the whole drilling process involving equipment, consumables and assembly of varied aircraft structures. The challenge of the task was to develop the ability of modeling a process with a sequence of drilling operations that the model user, in an intuitive way, can select and modify.
Technical Paper

Use of an Innovative Modular Gripper System for Flexible Aircraft Assembly Operations

2016-09-27
2016-01-2108
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Technical Paper

Simply Supported Retractable Top Beam for Wing Major Assembly Jig

2006-09-12
2006-01-3127
A large free-standing structure is constructed to positively position the spar and related components in the major assembly jig of the wing for a military transport aircraft. The beam of this structure is mounted on mechanisms enabling the lateral retraction of the beam and tooling to provide full part loading access and extraction of a completed wing. The free-standing nature of this design also allows full integration of an automated drilling machine into the jig.
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2006-09-12
2006-01-3141
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robot technology suitable for conducting automated inspection and assembly tasks within wing boxes. The composite, single skin construction of aircraft structures presents new challenges for robotic assembly. During box close-out it is necessary for aircraft fitters to climb into the wing box through a small access panel and use manual or power tools to perform a variety of tasks. These manual interventions give rise to a number of health and safety concerns. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. The advantages of automating in-wing processes will be discussed. This paper presents early stage results of the demonstration snake-arm robot and outlines expectations for future development.
Technical Paper

Composite Automatic Wing Drilling Equipment (CAWDE)

2006-09-12
2006-01-3162
A custom 5-axis machine tool is constructed to enable fully automated drilling and slave-bolt insertion of composite and metallic wingbox components for a new military transport aircraft. The machine tool can be transported to serve many assembly jigs within the cell. Several features enhance accuracy, capability, and operator safety.
Technical Paper

Flyaway Tooling for Higher Quality, More Cost-Effective, Aerostructure

1998-06-02
981843
Co-production of aircraft is resulting in demands for higher standards of manufacturing quality to ensure that parts and sub-assemblies from different companies and countries are compatible and interchangeable. As a result the existing method of building aerostructure using large numbers of dedicated manufacturing jigs and assembly tools, is now seen as being commercially undesirable, and technologically flawed. This paper considers an alternative, potentially more cost-effective, approach that embraces digital design, manufacturing, and inspection techniques, and in which reference and tooling features are incorporated into the geometry of the component parts. Within the aerospace industry this technology is known as ‘Flyaway Tooling’.
Technical Paper

Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry

2005-10-03
2005-01-3336
The paper details two phases of work completed by Airbus UK to create a standard deployment platform for robotic processes. The initial part of the paper focuses on an aerospace capability study developed to benchmark a number of robot models. The tests define absolute accuracies within full and restricted work envelopes, static and dynamic flexure, and temperature effects on the robot manipulator. The second part of the paper describes the development of an adaptive control process to accurately position singular or co-operating robots within a large working envelope. The solution is not dependent on complex software algorithms within the robot controller or restrictive laser metrology interfaces. The paper illustrates how a number of standard industrial products can be ‘fused together’ to provide a robust industrial solution.
Technical Paper

Using Structurally Integrated Location and Reference Features in the Assembly of Large Aerospace Structures

2000-09-19
2000-01-3024
This paper considers rhe use of structurally integrated location and reference features to simplify and to reduce the lead time and costs of assembling large aerospace structures. The location features are selected to fulfil a specific function based on restraint requirements and the necessary degree of precision to ensure that the Product Key Characteristics are achieved. Analysis of how to use structurally integrated location and reference features, indicates that their introduction will not be successful unless there is an integrated design team with a thorough understanding of the manufacturing processes and capabilities, the assembly processes, and the enabling technologies. The assembly of a single nose rib to a section of front spar is used as a typical assembly problem. Three alternative assembly processes are briefly described and used to illustrate the need for the industry to adopt an holistic approach to the design of aerostructure.
Technical Paper

Challenges of Digital Twin in High Value Manufacturing

2018-10-30
2018-01-1928
Digital Twin (DT) is a dynamic digital representation of a real-world asset, process or system. Industry 4.0 has recognised DT as the game changer for manufacturing industries in their digital transformation journey. DT will play a significant role in improving consistency, seamless process development and the possibility of reuse in subsequent stages across the complete lifecycle of the product. As the concept of DT is novel, there are several challenges that exist related to its phase of development and implementation, especially in high value manufacturing sector. The paper presents a thematic analysis of current academic literature and industrial knowledge. Based on this, eleven key challenges of DT were identified and further discussed. This work is intended to provide an understanding of the current state of knowledge around DT and formulate the future research directions.
Technical Paper

Design for Tooling to Enable Jigless Assembly - An Integrated Methodology for Jigless Assembly

2000-05-16
2000-01-1765
Jigless assembly is an approach towards reducing the cost and increasing the flexibility of tooling systems for aircraft manufacture through the minimisation of productspecific jigs, fixtures and tooling. A new, integrated methodology has been developed, which uses a number of building blocks and tools, to enable design for jigless assembly as a result of a logical, step-by-step process. This methodology, AIM-FOR-JAM, is currently being applied to redesign the Airbus A320 Fixed Leading Edge for jigless assembly, as part of the ‘Jigless Aerospace Manufacture’ (JAM) project.
X