Refine Your Search

Topic

Author

Search Results

Technical Paper

Flight Firing Operations on the ITALSAT F1 R-4D-11 Thruster

1991-07-01
911413
This Paper summarizes the main results of the firing operations performed by the Liquid Apogee Engine (LAE) of ITALSAT F1 spacecraft that has been launched Jan. 15,91. This evaluation represents the final check step of the thermal design activities on the LAE & Thermal Shield Assembly and of the firing control strategy definition presented on the Paper: “Thermal Design, testing and firing control strategy of the Liquid Apogee Engine & thermal Shield Assembly for the ITALSAT program” included in the SAE's 20th ICES conference (1990). The ITALSAT mission has been characterized by two LAE firing operations to place the spacecraft in the final geosynchronous orbit; each firing duration being about 37 minutes.
Technical Paper

The Service Module Thermal Tests of the ESA Herschel and Planck Satellites

2007-07-09
2007-01-3167
European Space Agency (ESA) has planned two important missions for performing astronomical investigations in the infrared and sub-millimetre wavelength range: ♦Herschel satellite has an observatory type mission and is the fourth cornerstone mission (CS4) of the “Horizon 2000” programme. It will carry three instruments (HIFI, SPIRE, and PACS) for high and medium resolution spectroscopy, imaging and photometry over the sub-millimetre and far-infrared range. A 3.5 m telescope will focus the incoming radiation on the Focal Plane Units of these instruments. ♦Planck satellite has a survey type mission and is the third Medium mission (M3) of the “Horizon 2000” programme. It will provide a definitive high-angular resolution map of the cosmic microwave background anisotropies over at least 95% of the sky and over a wide frequency range. A 1.5 m telescope will focus the incoming radiation on the focal plane shared by the two instruments (LFI and HFI).
Technical Paper

Modeling and Correlation of an Actively-Controlled Single Phase Mechanically-Pumped Fluid Loop

2007-07-09
2007-01-3122
This paper describes the transient simulation of a single-phase mechanically pumped fluid loop (MPFL) thermal control system, developed in the frame of the European Space Agency ARTES 8 (Advanced Research in Telecommunication Systems - Large Platform Program) program. MPFL is intended to cool a part of the payload on a high power telecommunication satellite. A transient simulation has been implemented using ESATAN/FHTS; hence the results have been correlated with the test results, obtained from full scale MPFL testing, using real on-orbit profiles. The most considerable parts of the activities described herein are simulation of the thermal control law, verification of control parameters during thermo-hydraulic testing and the subsequent correlation.
Technical Paper

Polar Platform Service Module Thermal Balance Testing and Correlation

1997-07-01
972315
The first use of the Polar Platform (PPF) is for the Envisat/PPF mission. The Envisat/PPF spacecraft has a launch mass of 8.5 tons and external dimensions of 10.0 metres x 2.8 metres x 2.1 metres. Due to it's large size it was necessary to perform the thermal balance and thermal vacuum testing in two modules. The first test was for the Service Module (SM) and the second for the Payload Module (PLM). This paper discusses the thermal balance testing and subsequent correlation of the Polar Platform Service Module thermal mathematical model.
Technical Paper

Thermal Stability Analysis in the Frequency Domain using the ESATAN Thermal Suite

2008-06-29
2008-01-2078
An increasing number of spacecraft missions have very stringent requirements for thermal stability to avoid thermally driven noise from affecting the main observables. For example, it may be necessary to reduce temperature fluctuations in the neighbourhood of the instrument below micro-Kelvin (μK). Consequently, the influence of fluctuations in boundary temperature or internal power dissipation on temperature at the instrument detector must be precisely evaluated. Thermal stability requirements are usually expressed as an upper limit on the linear spectrum density (LSD) of temperature fluctuations. This indicates the strength of the response to a perturbation of a given frequency, and is usually stated in units of K/√Hz. The LSD can be estimated by running a succession of transient simulations and applying Fast Fourier Transforms techniques, but this method is time-consuming and has numerical limitations.
Technical Paper

Columbus ECLS Activation and Initial Operations

2008-06-29
2008-01-2135
European Space Agency's (ESA's) Columbus module was launched on February 7, 2008. This marks the completion of more than 10 years of development. It is a major step forward for Europe in the area of Environmental Control and Life Support (ECLS) as Columbus contains several major assemblies which have been developed in Europe. These include the Condensing Heat Exchanger, Condensate Water Separator and the Cabin Fans. The paper gives a short overview of the system and its features and it will report the experiences from the initial activation and operations phase.
Technical Paper

The Columbus ECLSS First Year of Operations

2009-07-12
2009-01-2414
The launch and activation of ESA's Columbus module in early 2008 marked the completion of more than 10 years of development. Since then the Columbus ECLS is operating, including its major European ECLSS assemblies such as Condensing Heat Exchanger (CHX), Condensate Water Separator, Cabin Fans and Sensors. The paper will report the experiences from the first year of operations in terms of events, failures and lessons learned. Examples of this is the description of some off-nominal situations (such as Condensate Removal and IMV Return Fan failure, and relevant troubleshooting), and the preparation to Columbus Reduced Condensation Mode, as requested by NASA in order to minimize the crew time needed to empty Condensate Water Tanks in US Lab.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2009-07-12
2009-01-2506
The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
Technical Paper

An Overview of the Thermal Verification & Flight Data of Integral and Artemis Satellites

2003-07-07
2003-01-2465
The INTEGRAL (International Gamma Ray Astrophysics Laboratory) program is an ESA observatory scientific satellite to be used for gamma ray astronomy, while ARTEMIS (Advanced Data Relay and Technology Mission) is an ESA program to be used for data relay and technology demonstration. ARTEMIS was launched on the 12th of July 2001 with an Ariane V launcher from CSG, after successful completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on PFM (1998). INTEGRAL has been successfully launched on the 17th of October 2002 with a Proton launcher from Baikonour Cosmodrome, after completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on STM (1998) and PFM (2002).
Technical Paper

The Thermal Environmental Control (TEC) of the Fluid Science Laboratory (FSL): a combined (Water/Air) thermal design solution for a Columbus Active Rack

2001-07-09
2001-01-2374
The Fluid Science Laboratory (FSL) is an advanced multi-user facility for conducting fluid physics research in microgravity conditions. It will be installed in the Columbus module of the International Space Station (ISS) scheduled for launch in 2004. FSL is being developed by a European industrial team, led by ALENIA SPAZIO of Italy, and managed by the European Space Agency (ESA). The FSL Thermal Environment Control (TEC) establishes a defined thermal environment during the complete experiment duration to keep the experiment and the supporting subsystems within their thermal requirements. The TEC is further subdivided into three sections. The Air Cooling Section is based on the Avionics Air Assembly (AAA) which generates air streams inside the Facility to collect, by forced convection, the waste heat from the electronics belonging to the various Subsystems. The Secondary Water Loop (SWL) cooling Section provides the cooled water to the Experiment Container.
Technical Paper

Thermal Design Solutions for Space Exposed P/L’s and Pointing Systems on the ISS Express Pallet

2001-07-09
2001-01-2431
The use of the truss of the International Space Station (ISS) for the accommodation of several experiments, in the frame of the “Early opportunity for ISS utilization”, will have a lot of advantages such as the possibility of human or robotics intervention, the recovery of the experiment at the end of its life, visual inspection of the items and cost reduction with respect to an installation on a dedicated satellite. However, from the user point of view, the ISS generates a great number of disturbances and severe environmental conditions for the experiments providing constraints and affecting the performances in different areas (thermal, mechanical, and avionics). The present paper will discuss the thermal aspects (disturbances, constraints and performances) concerning three different projects, developed by Alenia Spazio Turin plant, that will be mounted on the truss of the ISS: Hexapod, Coarse Pointing Device (CPD) and Sky Polarization Observatory (SPOrt).
Technical Paper

Review of Italsat Thermal Performances Throughout the First Eighteen Months of Operational Life

1992-07-01
921324
Italsat F1 is a communication satellite sponsored by the Italian Space Agency and developed by Alenia Spazio. The spacecraft consists with a platform, which provides all the required services, and three payloads: a global beam package, a multibeam package for domestic communication services at 20/30 GHz, and an experimental propagation package at 40/50 GHz which embraces the European continent. Italsat F1 was sent off by an Ariane IV launcher from the Kourou Space Center in French Guyana on January 16th,1991, and it has been operating since February 1991. Having gone through a complete cycle of solstices and equinoxes, Italsat experienced the extreme environmental conditions at its beginning of life. The flight data collected throughout the first year of operational life enabled a review of the spacecraft thermal performances. This paper presents an overview of in-orbit observed temperatures.
Technical Paper

Esarad--Improvements to the European Space AgencyS Radiative Analyses

1996-07-01
961374
ESARAD is an integrated suite of analysis tools for thermal radiative analysis. The suite provides modules for: • Geometry Definition; • Calculation of view factor, radiative exchange factor and solar, albedo and planet flux results; •Visualization of models in orbit with pre- and post-processing of radiative and thermal results; • Reporting of all aspects of the model; and • Generation of Input Files for Thermal Analysis tools. ESARAD is driven by a fully developed GUI, providing the user with a simple, intuitive windows, menus, forms interface to all its features. A modern, block structured language can also be used to run ESARAD. This gives the advanced user great power and flexibility to perform the most complex analyses. ESARAD was designed and developed between 1988 and 1991 to replace the VWHEAT software used by ESA at that time.
Technical Paper

Development of Columbus Orbital Facility Thermal Mathematical Models for Integrated International Space Station Thermal Analyses

1996-07-01
961540
The Columbus Orbital Facility is being developed as the European laboratory contribution to the United States' led International Space Station programme. The need to exchange thermal mathematical models frequently amongst the Space Station partners for thermal analyses in support of their individual programme milestone, integration and verification activities requires the development of a commonly agreed and effective approach to identify and validate mathematical models and environments. The approach needs to take into account the fact that the partners have different model and software tool requirements and the fact that the models need to be properly tailored to include all the relevant design features. It must also decouple both programmes from the unavoidable design changes they are still undergoing. This problem presents itself for both active and passive thermal interfaces.
Technical Paper

Columbus Active Thermal Control Equipment Development

2005-07-11
2005-01-2769
The Columbus laboratory module for the International Space Station (ISS) uses active thermal control for cooling of avionics and payload in the pressurized compartment. The Active Thermal Control Subsystem (ATCS) is based on a water loop rejecting waste heat to the Medium Temperature Heat Exchanger and Low Temperature Heat Exchanger on Node 2, part of the US Segment of the ISS. Flow and temperature control in the ATCS is achieved by means of the Water Pump Assembly (WPA) and the 3-Way Modulating Valve (WTMO) units. For the flow control the WPA speed is commanded so that a fixed pressure drop is maintained over the plenum with the avionics and payload branches. Adjusting the WTMO internal flow split permit the two active units to perform the CHX and plenum inlet temperature control. The WPA includes a filter and an accumulator to control the pressure in the ATCS and to compensate for leakage and temperature-dependent volume variations.
Technical Paper

Design Approach and Implementation of a Mars Surface Food Production Unit

2005-07-11
2005-01-2824
This paper describes a design proposal for adapting the OGEGU Food Production Unit (FPU) to the surface of Mars in order to produce up to 40% of the diet for a six-member crew by growing a pre-defined set of vegetable food species. The external structure, lighting system and plant support system are assessed using ESM analysis. The study shows that the mass of an FPU operating on the Mars surface, featuring an opaque inflatable structure plus all the required subsystems and equipment, is in the order of 14,000 kg. The required volume is around 150 m3 and the power consumption is around 140 kW. A reduction of c. 20 kW could be obtained by exploiting natural light using transparent materials. Finally, the paper concludes with the identification of some technological gaps that need to be investigated further for the purpose of establishing a feasible FPU on Mars.
Technical Paper

Thin-film Smart Radiator Tiles With Dynamically Tuneable Thermal Emittance

2005-07-11
2005-01-2906
This paper describes recent advances in MPB's approach to spacecraft thermal control based on a passive thin-film smart radiator tile (SRT) that employs a variable heat-transfer/emitter structure. This can be applied to Al thermal radiators as a direct replacement for the existing OSR (optical second-reflector) radiator tiles with a net added mass under 100 gm/m2. The SRT employs a smart, integrated thin-film structure based on the nano-engineering of V1-x-yMxNyOn that facilitates thermal control by dynamically modifying the net infrared emittance passively in response to the temperature of the space structure. Dopants, M and N, are employed to tailor the transition temperature characteristics of the tuneable IR emittance. This facilitates thermal emissivities below 0.3 to dark space at lower temperatures that enhance the self-heating of the spacecraft to reduce heater requirements.
Technical Paper

Columbus to Human Research Facility Hydraulic Compatibility Test: Analysis and Results

2005-07-11
2005-01-3119
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
Technical Paper

The ATV Cargo Carrier Visual Video Target Switching Unit Thermal Design and Qualification

2005-07-11
2005-01-3120
The Visual Video Target Switching Unit (VVTSU) is the control unit dedicated to the Visual Video Target (VVT). The VVTSA, grouping VVTSU and VVT, is a “two-boxes assy”, externally located on ATV Front Cone, used to allow ATV monitoring by crewmembers inside the ISS Service Module, during the final approach up to 500 m from the docking port. Alenia Spazio is the responsible of VVTSA and in particular of the design, assembly and qualification of the VVSTU unit: an Engineering Model (for avionic tests), a Qualification Model and two Flight Units (+ 1 Spare) have been designed, assembled and verified in Torino and L’ Aquila Laboratories. The VVTSU is powered during the Rendezvous and it presents a high power dissipation, if compared with the reduced dimensions. The thermal control of this unit has been realized using passive means: a high conductive coupling with the fixation bracket, jointed with a radiator on the VVTSU top face.
Technical Paper

A Tool for Flexible and Rapid Thermal Analysis and Design in Feasibility and Preliminary Phases of Space Projects

2005-07-11
2005-01-3053
Feasibility and preliminary phases of space projects are aimed to answer to the very fundamental question whether a spacecraft (S/C) exists that can fulfil the mission objectives. In particular the thermal engineers must assess whether a possible configuration is feasible from the thermal point of view, or what modifications could make it suitable. The paper presents the Thermal Concept Design Tool (TCDT), a new software tool under development at Blue Engineering and Alenia Spazio for the European Space Agency (ESA), designed with the objective to assist the thermal engineers in reducing at minimum the effort required by simulation activities and focusing mainly on conceptual activities during feasibility and preliminary studies.
X