Refine Your Search

Topic

Author

Search Results

Journal Article

Characterization of the Tau Parallel Kinematic Machine for Aerospace Application

2009-11-10
2009-01-3222
A consortium of interested parties has conducted an experimental characterization of two Tau parallel kinematic machines which were built as a part of the EU-funded project, SMErobot1. Characteristics such as machine stiffness, work envelope, repeatability and accuracy were considered. This paper will present a brief history of the Tau parallel machine, the results of this testing and some comment on prospective application to the aerospace industry.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Journal Article

Shielding Effectiveness of Sodium Alanate and Ammonia Borane for Galactic Cosmic Ray and Solar Energetic Particle Event Environments

2008-06-29
2008-01-2163
Estimates of the effectiveness of the high-hydrogen containing materials, sodium alanate and ammonia borane, are made by calculating dose and dose equivalent for the 1977 solar minimum and 1970 solar maximum galactic cosmic ray spectra and for the large solar particle event spectra from the space era event of August 1972 and comparing their shielding effectiveness with that of polyethylene.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

Flight Firing Operations on the ITALSAT F1 R-4D-11 Thruster

1991-07-01
911413
This Paper summarizes the main results of the firing operations performed by the Liquid Apogee Engine (LAE) of ITALSAT F1 spacecraft that has been launched Jan. 15,91. This evaluation represents the final check step of the thermal design activities on the LAE & Thermal Shield Assembly and of the firing control strategy definition presented on the Paper: “Thermal Design, testing and firing control strategy of the Liquid Apogee Engine & thermal Shield Assembly for the ITALSAT program” included in the SAE's 20th ICES conference (1990). The ITALSAT mission has been characterized by two LAE firing operations to place the spacecraft in the final geosynchronous orbit; each firing duration being about 37 minutes.
Technical Paper

A Simulation Evaluation of VFR Heliport Operations in an Obstacle-Rich Environment

1997-10-13
975532
A study was conducted to investigate the impacts of obstacles on pilot performance, workload, and perceptions of safety in a visual flight rule (VFR) obstacle-rich environment (ORE). The study was conducted using a piloted simulation of a single-rotor, multi-engine helicopter operating in a highly detailed urban visual scene database. The database contained multiple obstacle types, with variable obstacle heights and densities. Nine pilots completed the approaches and departures into and out of a heliport located in the center of the generic urban environment. Two flight routes offered unique presentations of terrain and obstacle types. Obstacle height/density and time of day/lighting parameters were systematically manipulated. A multi-dimensional data collection methodology employing the simultaneous collection of direct aircraft state, pilot performance data, pilot physiological data and pilot subjective responses was employed.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

Analysis and Predicted Temperature Control of Crew Quarters added to Node 2 of the International Space Station

2007-07-09
2007-01-3071
Currently scheduled to be delivered to the International Space Station (ISS) in 2009, Crew Quarters (CQs) will be installed in the Node 2 Module. The CQs provide crewmembers with private space, a place to sleep, and minimal storage. Analysis is to be performed to determine if the United States Operational Segment (USOS) Node 2 can maintain temperature between 47°C and 62°C (65°F and 80°F) [units are CCGS with U.S unit in parenthesis] within the CQ. The analysis will concentrate on the nominal hot environmental case. Environmental heat is due to solar heating of the external shell of the ISS. Configurations including both three and four CQs are examined, as well as multiple configurations of the Low Temperature Loop (LTL) that flows through the Node 2 Common Cabin Air Assembly (CCAA). This paper describes the analysis performed to determine if Node 2 will be able to maintain cabin temperature between 47°C and 62°C (65°F and 85°F).
Technical Paper

Liquid Water Content and Droplet Size Distribution Mass Fractions for Wind Milling Engine Fan Blade Ice Accretion Analysis

2007-09-24
2007-01-3291
A procedure for calculating the engine inlet diffuser section liquid water content and mass fractions of liquid water content associated with the water droplet size distribution for wind milling engine ice accretion analysis is presented. Critical fuel reserve calculation for extended twin-engine operation requires the determination of drag increase due to ice accretion on inoperative wind milling engine fan blade and guide vane.
Technical Paper

The 747-400 Dreamlifter - Overview & Mission

2007-01-17
2007-01-3888
The development of new commercial airliners is a very risky proposition. To get it right, airframe manufacturers must balance new technologies and manufacturing methods with global participation and business considerations. The 787 is Boeing's popular new wide body aircraft incorporating state of the art composites design and manufacturing methods. But new technology alone is not enough. A new logistics system was needed to integrate global partners in order to fully benefit from new technologies. The Boeing 747-400 Dreamlifter is a special purpose 747-400 modified to transport Boeing 787 airplane components through various stages of manufacturing.
Technical Paper

A Requirements-Based CNS/ATM Architecture

1998-09-28
985552
This paper identifies an approach to the definition of a National Airspace System (NAS) architecture which will support the future development of the U.S. air transportation system, consistent with long-range needs of the various users of the NAS. The approach outlined identifies the development of an FAA preliminary design methodology, with supporting tools and processes to provide the basis for NAS modernization. This approach begins with the quantification of the primary long-range objectives of the NAS, which the system architecture must support over its design life. These objectives are the basis of the mission analysis and requirements development, which, in turn, are used for technology tradeoff studies and the baselining of an architecture for evaluation.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

An Overview of the Thermal Verification & Flight Data of Integral and Artemis Satellites

2003-07-07
2003-01-2465
The INTEGRAL (International Gamma Ray Astrophysics Laboratory) program is an ESA observatory scientific satellite to be used for gamma ray astronomy, while ARTEMIS (Advanced Data Relay and Technology Mission) is an ESA program to be used for data relay and technology demonstration. ARTEMIS was launched on the 12th of July 2001 with an Ariane V launcher from CSG, after successful completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on PFM (1998). INTEGRAL has been successfully launched on the 17th of October 2002 with a Proton launcher from Baikonour Cosmodrome, after completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on STM (1998) and PFM (2002).
Technical Paper

International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

2003-07-07
2003-01-2519
As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To predict ITCS performance and address flight issues, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW® programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and it was validated in 2003. Even before complete validation the facility was used to address flight issues, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant.
Technical Paper

International Space Station Internal Thermal Control System Cold Plate/Fluid-Stability Test - Two Year Update

2003-07-07
2003-01-2518
Operation of the Internal Thermal Control System (ITCS) Cold Plate/Fluid-Stability Test Facility commenced on September 5, 2000. The facility was intended to provide advance indication of potential problems on board the International Space Station (ISS) and was designed: To be materially similar to the flight ITCS. To allow for monitoring during operation. To run continuously for three years. During the first two years of operation the conditions of the coolant and components were remarkably stable. During this same period of time, the conditions of the ISS ITCS significantly diverged from the desired state. Due to this divergence, the test facility has not been providing information useful for predicting the flight ITCS condition. Results of the first two years are compared with flight conditions over the same time period, showing the similarities and divergences.
Technical Paper

Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

2003-07-07
2003-01-2487
Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station's U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBA's service life.
Technical Paper

Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

2003-07-07
2003-01-2566
The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling.
Technical Paper

Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

2003-07-07
2003-01-2565
A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

International Space Station Environmental Control And Life Support System Status: 2001-2002

2002-07-15
2002-01-2494
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between May 2001 and April 2002. The ISS continued permanent crew operations, with Phase 2 completion accomplished during this period. Work continued on the Phase 3 elements with Node 3 proceeding toward a final design review and the regenerative ECLS equipment proceeding into manufacturing.
X