Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Columbus APM Water Loop Architecture Tradeoffs to Meet Space Station Freedom Interface Requirements

1992-07-01
921244
The Columbus Attached Pressurised Module (APM) Active Thermal Control System (ATCS) water loop collects the APM waste heat and transfers it to the Space Station Freedom (SSF) Central Thermal Bus (CTB). The interface between the APM water loop and the SSF ammonia loops is achieved with two ammonia/water interloop heat exchangers (IH/X), one being low temperature (LT) and the other moderate temperature (MT). The APM internal water loop provides cooling to payload and subsystem users which have varying temperature requirements at their heat rejection interfaces, and can be categorized as cold branch and warm branch users, (e.g. condensing heat exchanger (CHX) and refrigerator are cold branch users, while Avionic heat exchanger (AHX) and furnace payloads would be warm branch users.)
Technical Paper

ESACAP Simulations of MPLM Atmosphere Control and Supply Systems

1994-06-01
941314
At present, limited tools are available to model atmosphere control and supply systems simply, in order to allow quick design assessments based on analytical performances. In this context, the utilization of PC based ESACAP adapted as an Atmosphere Control and Supply (ACS) simulation tool is described. The analyses results shown in this paper refer to the activities of MPLM baseline re-definition carried out in accordance with the Space Station re-configuration. As a consequence, in several cases the described analyses reflect conservative assumptions and have been performed in a parametric way so as to take the uncertainties into account.
Technical Paper

Crew Interface Analysis for the Mini Pressurized Logistics Module - An Interaction Between Computer Simulation, Task Analysis and Mock-Up Test Evaluation

1994-06-01
941589
A Human Factors Engineering (HFE) analysis has been involved in the design process of the Mini Pressurized Logistics Module (MPLM) for the International Space Station (ISS) since the beginning, as an integrated part of the design support activities. The support of HFE in the configuration process has been directed towards the optimization of the MPLM design through the analysis and evaluation of all the interfaces occurring in the module - nominal and non-nominal - between the crew, the system and the subsystem equipment. In order to identify and analyze all the crew interfaces occurring inside the module, a systematic approach, involving different disciplines, is necessary. The integration of three different tools such as computer simulation, task analysis and mock-up test activities has been employed as an organic unit, in order to establish a comprehensive collection of useful data.
Technical Paper

Application of the Crew Support Equipment Design Validation Philosophy in the Miriam '95 Programme

1995-07-01
951516
Space hardware design, as well as that for hardware destined to work in 1-g environment, needs to be submitted to a complete design verification process before final utilisation in nominal conditions. As space hardware ground verification is difficult and expensive, a design verification philosophy has been developed in order to reach, as far as possible, the highest degree of space hardware reliability and usability and hence to increase crew productivity via a perfect integration of man and machines. This activity is mainly based on a complete hardware testing process (first on ground, then in microgravity simulated environment and, at the end, during a short duration space mission) and on a correct test procedure preparation in order to avoid inconveniences during test execution. Opportunity for an application of the design verification philosophy has been given by Columbus Precursor Flights and the related MIRIAM '95 programme.
Technical Paper

MPLM Thermal Aspects During Ground and Flight Scenarios

1995-07-01
951702
The MPLM (Mini Pressurized Logistic Module) is one of the Elements constituting the ISSA (International Space Station Alpha). With respect to the other Elements, the MPLM is not permanently attached to the ISSA, but it is transported by the Orbiter several times from/to the Earth, since its primary use is to resupply and return cargos. The MPLM capability to support the logistic flights is guaranteed during several mission phases (ground, Orbiter transportation, on-orbit docked to the Station). Since the installed cargo can be passive or active, the required MPLM functions are based on the actual flight. This paper presents an overview of the activities performed in Alenia Spazio to identify the criticality and peculiarity of the MPLM mission scenarios from the thermal point of view. The best technical solutions, foreseen up to now, have been implemented in the design to guarantee the reliability requested by such an important and unique Space Station Element.
Technical Paper

System Overview of the Columbus APM Environmental Control “Design-to-Cost” Baseline

1995-07-01
951527
As a consequence of the reduced funding by the ESA Member States contributing to the Columbus and Manned Transportation Programmes, the Columbus Project has undergone two major cost reduction exercises since 1993. An important cost reduction was achieved in mid '93 by downsizing the Attached Pressurized Module (APM) from 8 to 5 Double Racks equivalent length. To reduce the costs further, in 1994 the European space industry took the opportunity of exploiting specific features of the APM common with those of other projects, potential candidates being the Mini Pressurized Logistic Module (MPLM), developed by the Italian Space Agency (ASI) for NASA, or the European developed Russian Data Management System (DMS-R). In addition simplifications in System Function and in the Verification approach and maximum use of Off-the-Shelf and Commercial/Aviation/Military (CAM) hardware were investigated.
Technical Paper

Thermal Comfort in the Columbus Attached Pressurized Module

1996-07-01
961367
The Columbus Attached Pressurised Module (APM) is intended to support a shirt-sleeve environment for crew activities. Top level requirements therefore define a cabin air temperature and humidity range (the so-called “Comfort Box”), extreme air velocities for ventilation in the centra aisle, maximum mean radiant temperature of the cabin walls. Air temperature selectability has to be ensured with adequate accuracy across the whole range. The APM environmental control system, in particular the Temperature and Humidity Control (THC) system, is designed and verified against these parameters. Cabin thermal conditions can be evaluated by the APM Integrated Overall Thermal Mathematical Model (IOTMM), representing the general thermal behaviour of the APM, including the THC system. Heat loads due to APM subsystem equipment and payloads, solar flux and the crew itself have been considered in the analyses.
Technical Paper

Design Concepts for the Thermal Control of a Crew Transport Vehicle

1996-07-01
961542
Under the guidelines established by the European Space Agency (ESA), a specific effort was devoted to define the preliminary design concepts for a Crew Transport Vehicle (CTV) compatible with the Ariane 5 launcher. The mission objectives of this vehicle include the possibility of transporting 4 people (and a limited amount of pressurized payload) to the International Space Station Alpha (ISSA), and returning them to Earth safely. Different options were identified at system level, however a modular vehicle was commonly adopted: a Crew Module (CM) designed to withstand the typical phases of the atmospheric re-entry and provide an adequate environment for the crew during all the mission a Resource Module (RM) envisaged to provide the propulsion provisions for orbital transfer and deorbiting; in addition it carries all the necessary resources to support the mission from lift-off until separation from the CM.
X