Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Development/Application of Sheet Metal Forming Technology at Alcoa

1993-03-01
930523
The advent of high speed computers permits the use of the finite element method to model complex sheet metal forming processes on a reasonable time scale. The design and development of sheet metal parts in the automotive industry and the need for improved sheet forming processes and reduced part development cost have led to the use of computer simulation in tool/die design of sheet metal pressings. An accurate constitutive description of plastic anisotropic yield loci and work hardening of material behavior in sheet forming is now a reality. The constitutive equation developed at Alcoa for describing anisotropic material behavior is consistent with polycrystalline plasticity, and it is expected to improve the computational accuracy of forming process for polycrystalline metals and alloys.
Technical Paper

Verification of Crystallographic Texture Based FLD Predictions for Aluminum Sheet

1995-02-01
950701
Determination of forming limit diagrams (FLDs) by experimental methods requires a significant amount of time and expertise in interpretation of data. Their construction can be especially difficult for aluminum alloys due to slightly negative or near zero strain rate sensitivity characteristics which create sharp strain gradients. For this reason a mathematical model which incorporates microstructural attributes, namely crystallographic texture, with a description of strain hardening behavior was developed by Barlat1 to predict the forming limit strains for a given material. Using Barlat, forming limit diagrams were predicted for various automotive body sheet alloys and verified against experimental data. Excellent correlation was found between the experimental and predicted diagrams. Prediction of limit strains requires approximately one-tenth of the time required for experimental diagrams and eliminates variations associated with experimental determination techniques.
Technical Paper

Evaluation of Various Yield Criteria in LS-DYNA3D for Sheet Forming Application for Aluminum

1995-02-01
950925
Finite element modeling of sheet forming processes for complex automotive parts using an explicit dynamic code such as LS-DYNA3D is increasingly used for producibility analysis and die development. In modeling sheet metal forming processes, it is very common to represent material behavior by either Von Mises' or Hill's yield criterion using commercial finite element codes. However, these criteria do not provide an accurate representation of aluminum alloys. Recently, a new yield criterion proposed by Barlat has been incorporated into LS-DYNA3D to describe the anisotropic material behavior of aluminum alloys. This paper examines the influence of Von Mises', Hill's (1948) and Barlat's yield criteria on the FEM simulation results for the deep drawing of a square cup and cylindrical cup for aluminum alloys. The sensitivity of predicted results to yield criteria is examined for deformation behavior, strain localization and potential of wrinkling.
Technical Paper

Microstructural Material Models for Fatigue Design of Castings

1996-02-01
960161
Classically, structural component fatigue design is based on testing and empirical models. First a series of average stress-life curves are generated from fatigue tests. Constant life diagrams are then developed accounting for mean stress effect, casting quality, surface finish, volume and other factors. Component design is then based on keeping the effective alternating stress below the diagram limit stress. While this procedure has worked well to design many components, it is based on extensive fatigue testing and empirical stress reduction factors. Thus, material and process improvements and computerization of the design process are difficult to incorporate into this test/empirical based design methodology. Fracture mechanics and damage tolerant design methodologies are used in aerospace for fatigue design. These methods predict well the fatigue life for surface scratches (rogue inspectable flaws) of about 0.25-1.27 mm in size.
Technical Paper

Tool Material Performance During Draw Bead Deformation of Aluminum Sheet

1996-02-01
960820
Draw bead simulator tests were performed on various tool materials using aluminum alloys 2008-T4 and 6111-T4. The tool materials included hardened cast steel J435/0050A, D2 alloy, cast steel with ion nitride and PVD chromium nitride surface treatments, and cast steel with standard chromium and Wearalloy™ chromium coatings. Friction and galling behavior were monitored over an extended period of testing which allowed differentiation of the tool materials and alloys. Wearalloy™ and CrN tool coatings consistently demonstrated improved ability to prevent material transfer for both aluminum alloys, in spite of friction coefficients which were higher than the uncoated and ion nitrided tools. The ion nitrided surface exhibited the lowest friction coefficients of the surface treatments tested, but showed appreciably more wear. For a given lubricant and dilution ratio, alloy 2008-T4 exhibited an increased tendency for material transfer compared to alloy 6111-T4 for all tool materials tested.
Technical Paper

Metallurgical Factors Related to Machining Aluminum Castings

1967-02-01
670465
Three metallurgical factors have a major influence on the machinability of aluminum castings: chemical composition, heat treatment, and foreign inclusions. Othermet-allurgical factors that may also affect machinability are generally related to one of these three items. In general, aluminum alloys have good machining characteristics, although tests indicate that they cover a range. Some of the differences that do exist are discussed and practices identified that lead to improved machinability.
X