Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

Low-Friction Coatings for Air Bearings in Fuel Cell Air Compressors

2000-04-02
2000-01-1536
In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the U.S. Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. We presents here an evaluation of the Argonne coating for air compressor thrust bearings.
Technical Paper

Nanofluids for Vehicle Thermal Management

2001-05-14
2001-01-1706
Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.
X