Refine Your Search

Topic

Author

Search Results

Journal Article

Impact of Energy Management on the NPV Gasoline Savings of PHEVs

2010-04-12
2010-01-1236
This paper evaluates the impact of energy management strategy on the cost benefits of a plug-in hybrid electric vehicle (PHEV) by taking into account the impact of PHEV energy management on battery life and petroleum displacement over the life of the vehicle. Using Battery in the Loop (BIL), a real battery is subjected to transient power demands by a virtual vehicle. The vehicle energy management strategy is varied, resulting in different battery utilization scenarios. Battery life, which varies with battery utilization, is estimated for the different energy management scenarios. The same representative drive cycle is used over the different energy management strategies to isolate the impact of energy management on battery utilization. PHEV gasoline savings, in comparison to a charge sustaining hybrid, are calculated for each of the energy management strategies, for a fixed distance of 40 miles.
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Journal Article

Iterative Learning Algorithm Design for Variable Admittance Control Tuning of A Robotic Lift Assistant System

2017-03-28
2017-01-0288
The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
Technical Paper

Interactive Effects between Sheet Steel, Lubricants, and Measurement Systems on Friction

2020-04-14
2020-01-0755
This study evaluated the interactions between sheet steel, lubricant and measurement system under typical sheet forming conditions using a fixed draw bead simulator (DBS). Deep drawing quality mild steel substrates with bare (CR), electrogalvanized (EG) and hot dip galvanized (HDG) coatings were tested using a fixed DBS. Various lubricant conditions were targeted to evaluate the coefficient of friction (COF) of the substrate and lubricant combinations, with only rust preventative mill oil (dry-0 g/m2 and 1 g/m2), only forming pre-lube (dry-0 g/m2, 1 g/m2, and >6 g/m2), and a combination of two, where mixed lubrication cases, with incremental amounts of a pre-lube applied (0.5, 1.0, 1.5 and 2.0 g/m2) over an existing base of 1 g/m2 mill oil, were analyzed. The results showed some similarities as well as distinctive differences in the friction behavior between the bare material and the coatings.
Technical Paper

Prediction of Combustion Phasing Using Deep Convolutional Neural Networks

2020-04-14
2020-01-0292
A Machine Learning (ML) approach is presented to correlate in-cylinder images of early flame kernel development within a spark-ignited (SI) gasoline engine to early-, mid-, and late-stage flame propagation. The objective of this study was to train machine learning models to analyze the relevance of flame surface features on subsequent burn rates. Ultimately, an approach of this nature can be generalized to flame images from a variety of sources. The prediction of combustion phasing was formulated as a regression problem to train predictive models to supplement observations of early flame kernel growth. High-speed images were captured from an optically accessible SI engine for 357 cycles under pre-mixed operation. A subset of these images was used to train three models: a linear regression model, a deep Convolutional Neural Network (CNN) based on the InceptionV3 architecture and a CNN built with assisted learning on the VGG19 architecture.
Technical Paper

Process-Monitoring-for-Quality - A Step Forward in the Zero Defects Vision

2020-04-14
2020-01-1302
More than four decades ago, the concept of zero defects was coined by Phillip Crosby. It was only a vision at the time, but the introduction of Artificial Intelligence (AI) in manufacturing has since enabled it to become attainable. Since most mature manufacturing organizations have merged traditional quality philosophies and techniques, their processes generate only a few Defects Per Million of Opportunities (DPMO). Detecting these rare quality events is one of the modern intellectual challenges posed to this industry. Process Monitoring for Quality (PMQ) is an AI and big data-driven quality philosophy aimed at defect detection and empirical knowledge discovery. Detection is formulated as a binary classification problem, where the right Machine Learning (ML), optimization, and statistics techniques are applied to develop an effective predictive system.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

Midsize and SUV Vehicle Simulation Results for Plug-In HEV Component Requirements

2007-04-16
2007-01-0295
Because Plug-in Hybrid Electric Vehicles (PHEVs) substitute electrical power from the utility grid for fuel, they have the potential to reduce petroleum use significantly. However, adoption of PHEVs has been hindered by expensive, low-energy batteries. Recent improvements in Li-ion batteries and hybrid control have addressed battery-related issues and have brought PHEVs within reach. The FreedomCAR Office of Vehicle Technology has a program that studies the potential benefit of PHEVs. This program also attempts to clarify and refine the requirements for PHEV components. Because the battery appears to be the main technical barrier, both from a performance and cost perspective, the main efforts have been focused on that component. Working with FreedomCAR energy storage and vehicle experts, Argonne National Laboratory (Argonne) researchers have developed a process to define the requirements of energy storage systems for plug-in applications.
Technical Paper

Impact of Drive Cycle Aggressiveness and Speed on HEVs Fuel Consumption Sensitivity

2007-04-16
2007-01-0281
Hybrid Electric Vehicle (HEV) owners have reported significantly lower fuel economy than the published estimates. Under on-road driving conditions, vehicle acceleration, speed, and stop time differ from those on the normalized test procedures. To explain the sensitivity, several vehicles, both conventional and hybrid electric, were tested at Argonne National Laboratory. The tests demonstrated that the fuel economy of Prius MY04 was more sensitive to drive-cycle variations. However, because of the difficulty in instrumenting every component, an in-depth analysis and quantification of the reasons behind the higher sensitivity was not possible. In this paper, we will use validated models of the tested vehicles and reproduce the trends observed during testing. Using PSAT, the FreedomCAR vehicle simulation tool, we will quantify the impact of the main component parameters, including component efficiency and regenerative braking.
Technical Paper

Analyzing the Uncertainty in the Fuel Economy Prediction for the EPA MOVES Binning Methodology

2007-04-16
2007-01-0280
Developed by the U.S. Environmental Protection Agency (EPA), the Multi-scale mOtor Vehicle Emission Simulator (MOVES) is used to estimate inventories and projections through 2050 at the county or national level for energy consumption, nitrous oxide (N2O), and methane (CH4) from highway vehicles. To simulate a large number of vehicles and fleets on numerous driving cycles, EPA developed a binning technique characterizing the energy rate for varying Vehicle Specific Power (VSP) under predefined vehicle speed ranges. The methodology is based upon the assumption that the vehicle behaves the same way for a predefined vehicle speed and power demand. While this has been validated for conventional vehicles, it has not been for advanced vehicle powertrains, including hybrid electric vehicles (HEVs) where the engine can be ON or OFF depending upon the battery State-of-Charge (SOC).
Technical Paper

Calculating Results and Performance Parameters for PHEVs

2009-04-20
2009-01-1328
As one of the U.S Department of Energy's (DOE's) vehicle systems benchmarking partners, Argonne National Laboratory (Argonne) has tested many plug-in hybrid electric vehicle (PHEV) conversions and purpose-built prototype vehicles. The procedures for testing follow draft SAE J1711 and California Air Resources Board (CARB) test concepts and calculation methods. This paper explains the testing procedures and calculates important parameters. It describes some parameters, such as cycle charge-depleting range, actual charge-depleting range, electric range fraction, equivalent all-electric range, and utility factor-weighted fuel economy.
Technical Paper

Tahoe HEV Model Development in PSAT

2009-04-20
2009-01-1307
Argonne National Laboratory (Argonne) and Idaho National Laboratory (INL), working with the FreedomCAR and Fuels Partnership, lead activities in vehicle dynamometer and fleet testing as well as in modeling activities. By using Argonne’s Advanced Powertrain Research Facility (APRF), the General Motors (GM) Tahoe 2-mode was instrumented and tested in the 4-wheel-drive test facility. Measurements included both sensors and controller area network (CAN) messages. In this paper, we describe the vehicle instrumentation as well as the test results. On the basis of the analysis performed, we discuss the vehicle model developed in Argonne’s vehicle simulation tool, the Powertrain System Analysis Toolkit (PSAT), and its comparison with test data. Finally, on-road vehicle data, performed by INL, is discussed and compared with the dynamometer results.
Technical Paper

Impact of Advanced Technologies on Medium-Duty Trucks Fuel Efficiency

2010-10-05
2010-01-1929
Rising fuel costs, increased regulations, and heightened customer sensitivity to energy efficiency has prompted the evaluation of numerous powertrain technology improvements to introduce into production. The actual impact of such technologies can differ broadly, depending on the technology or application. To evaluate the fuel consumption impact, various baseline vehicles have been created and simulated by using Argonne National Laboratory's vehicle modeling and simulation tool, the Powertrain Systems Analysis Toolkit (PSAT). This paper provides a quantitative evaluation of several technologies or combinations of technologies. First, we assess the impact of single technologies, including vehicle/chassis characteristics, such as weight, aerodynamics, or rolling resistance. Next, we consider advanced powertrain technologies, ranging from dieselization to transmissions with a higher gear number, and hybridization.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
Technical Paper

Assessing and Modeling Direct Hydrogen and Gasoline Reforming Fuel Cell Vehicles and Their Cold-Start Performance

2003-06-23
2003-01-2252
This paper analyzes fuel economy benefits of direct hydrogen and gasoline reformer fuel cell vehicles, with special focus on cold-start impacts on these fuel cell based vehicles. Comparing several existing influential studies reveals that the most probable estimates from these studies differ greatly on the implied benefits of both types of fuel cell vehicles at the tank-to-wheel level (vehicle-powertrain efficiency and/or specific power), leading to great uncertainties in estimating well-to-wheel fuel energy and/or greenhouse gas (GHG) emission reduction potentials. This paper first addresses methodological issues to influence the outcome of these analyses. With one exception, we find that these studies consistently ignore cold-start and warm-up issues, which play important roles in determining both energy penalties and start-up time of fuel cell vehicles. To better understand cold-start and warm-up behavior, this paper examines approaches and results based on two available U.S.
Technical Paper

Modeling the Performance of Lithium-Ion Batteries for Fuel Cell Vehicles

2003-06-23
2003-01-2285
This study involves the battery requirements for a fuel cell-powered hybrid electric vehicle. The performances of the vehicle [a 3200-lb (1455-kg) sedan], the fuel cell, and the battery were evaluated in a vehicle simulation. Most of the attention was given to the design and performance of the battery, a lithium-ion, manganese spinel-graphite system of 75-kW power to be used with a 50-kW fuel cell. The total power performance of the system was excellent at the full operating temperatures of the fuel cell and battery. The battery cycling duty is very moderate, as regenerative braking for the Federal Urban Driving Schedule and the Highway Fuel Economy Test cycles can do all charging of the battery. Cold start-up at 20°C is straightforward, with full power available immediately.
Technical Paper

Comparing Apples to Apples: Well-to-Wheel Analysis of Current ICE and Fuel Cell Vehicle Technologies

2004-03-08
2004-01-1015
Because of their high efficiency and low emissions, fuel-cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete well-to-wheel evaluation must be performed to determine the potential impact of a technology on carbon dioxide and Green House Gases (GHGs) emissions. Several modeling tools developed by Argonne National Laboratory (ANL) were used to evaluate the impact of advanced powertrain configurations. The Powertrain System Analysis Toolkit (PSAT) transient vehicle simulation software was used with a variety of fuel cell system models derived from the General Computational Toolkit (GCtool) for pump-to-wheel (PTW) analysis, and GREET (Green house gases, Regulated Emissions and Energy use in Transportation) was used for well-to-pump (WTP) analysis. This paper compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional, hybrid and fuel cell technologies.
Technical Paper

Energy Storage Requirements for Fuel Cell Vehicles

2004-03-08
2004-01-1302
Because of their high efficiency and low emissions, fuel-cell vehicles are undergoing extensive research and development. As the entire powertrain system needs to be optimized, the requirements of each component to achieve FreedomCAR goals need to be determined. With the collaboration of FreedomCAR fuel cell, energy storage, and vehicle Technical Teams, Argonne National Laboratory (ANL) used several modeling tools to define the energy storage requirements for fuel cell vehicles. For example, the Powertrain System Analysis Toolkit (PSAT), which is a transient vehicle simulation software, was used with a transient fuel cell model derived from the General Computational Toolkit (GCtool). This paper describes the impact of degree of hybridization, control strategy, and energy storage technology on energy storage requirements for a fuel cell SUV vehicle platform.
X