Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Technical Paper

Chemical Kinetic Modeling of the Oxidation of Unburned Hydrocarbons

1992-10-01
922235
The chemistry of unburned hydrocarbon oxidation in SI engine exhaust was modeled as a function of temperature and concentration of unburned gas for lean and rich mixtures. Detailed chemical kinetic mechanisms were used to model isothermal reactions of unburned fuel/air mixture in an environment of burned gases at atmospheric pressure. Simulations were performed using five pure fuels (methane, ethane, propane, n-butane and toluene) for which chemical kinetic mechanisms and steady state hydrocarbon (HC) emissions data were available. A correlation is seen between reaction rates and HC emissions for different fuels. Calculated relative amounts of intermediate oxidation products are shown to be consistent with experimental measurements.
Technical Paper

Auto-Oil Program Phase II Heavy Hydrocarbon Study: Fuel Species Oxidation Chemistry and Its Relationship to the Auto-Oil Data

1994-10-01
941970
The oxidation chemistry of paraffins, aromatics, olefins and MTBE were examined. Detailed chemical kinetics calculations were carried out for oxidation of these compounds in the engine cycle. The oxidation rates are very sensitive to temperature. At temperatures of over 1400 K (depending on the fuel), all the hydrocarbons are essentially oxidized for typical residence time in the engine. Based on the kinetics calculations, a threshold temperature is defined for the conversion of the fuel species to CO, CO2, H2O and partially oxidized products. The difference in the survival fraction between aromatics and non-aromatics is attributed to the higher threshold temperature of the aromatics.
Technical Paper

Chemical Analysis of Diesel Exhaust Odor Species

1974-02-01
740216
Sensory studies have described diesel exhaust odor in terms of two major odor character groups-oily-kerosene and smoky-burnt. The odorous compounds have been identified in a detailed analytical chemistry-odor study. The oily-kerosene odor group is associated with the aromatic portion of the unburned fuel-principally, the alkyl substituted benzenes, indans, and tetralins. The smoky-burnt odors arise from partial combustion products of the paraffin and aromatic fuel components. Our studies have shown a good correlation between exhaust odor intensity and abundance of the partial combustion products. An analytical method has been developed, based on liquid chromatography, for the quantitative expression of exhaust odor intensity by measurement of the smoky-burnt odor group. Initial survey studies show the method to be applicable over a wide odor emission range. Fuel variation has little effect, whereas injector variables do influence odor intensity.
Technical Paper

Diesel Exhaust Odor Analysis by Sensory Techniques

1974-02-01
740215
The odor profile method has been applied to the measurement and analysis of diesel exhaust odor. The human sensory panel has described the odor of diluted exhaust and analytical fractions isolated from the exhaust in terms of total intensity of aroma (TIA), and individual odor character notes. For convenience, diesel exhaust odor can be described in two character groups-oily-kerosene and smoky-burnt odor. The odorous species were determined by detailed chemical analyses supported by comparative data from reference compounds. To achieve reliable quantitative odor intensity measurements, it was necessary to present the odor panel with a series of concentrations (dilutions) of exhaust in air over a wide range. The odor intensity at a given exhaust concentration is computed from a least squares analysis of the entire panel data. The results demonstrate an odor intensity range of slight to moderately strong for diesel exhaust at 1000:1 dilution.
Technical Paper

IGNITION OF FUELS BY RAPID COMPRESSION

1950-01-01
500178
THE autoignition characteristics of several fuels under various conditions of mixture strength, compression ratio, and temperature have been studied by means of a rapid-compression machine. The behaviors of a knock inhibitor, tetraethyl lead, and a knock inducer, ethyl nitrite, have also been studied. Simultaneous records of pressure, volume, and the inflammation have been obtained. These records show the diverse aspects of the autoignition phenomenon and indicate, among other things, according to the authors, that a comparison of the detonating tendencies of fuels must include not only a consideration of the length of the delay period but also an evaluation of the rate of pressure rise during autoignition. Physical interpretations of the data are presented but chemical interpretations have been avoided. The work was exploratory in nature. The authors hope that the results will stimulate activity in this important branch of combustion research.
Journal Article

The Underlying Physics and Chemistry behind Fuel Sensitivity

2010-04-12
2010-01-0617
Recent studies have shown that for a given RON, fuels with a higher sensitivity (RON-MON) tend to have better antiknock performance at most knock-limited conditions in modern engines. The underlying chemistry behind fuel sensitivity was therefore investigated to understand why this trend occurs. Chemical kinetic models were used to study fuels of varying sensitivities; in particular their autoignition delay times and chemical intermediates were compared. As is well known, non-sensitive fuels tend to be paraffins, while the higher sensitivity fuels tend to be olefins, aromatics, diolefins, napthenes, and alcohols. A more exact relationship between sensitivity and the fuel's chemical structure was not found to be apparent. High sensitivity fuels can have vastly different chemical structures. The results showed that the autoignition delay time (τ) behaved differently at different temperatures. At temperatures below 775 K and above 900 K, τ has a strong temperature dependence.
X