Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Analysis of the Turbocharger Compressor Surge Margin Using a Hurst-Exponent-based Criterion

2016-04-05
2016-01-1027
Turbocharger compressors are limited in their operating range at low mass flows by compressor surge, thus restricting internal combustion engine operation at low engine speeds and high mean effective pressures. Since the exact location of the surge line in the compressor map depends on the whole gas exchange system, a safety margin towards surge must be provided. Accurate early surge detection could reduce this margin. During surge, the compressor outlet pressure fluctuates periodically. The Hurst exponent of the compressor outlet pressure is applied in this paper as an indicator to evaluate how close to the surge limit the compressor operates. It is a measure of the time-series memory that approaches zero for anti-persistence of the time series. That is, a Hurst exponent close to zero means a high statistical preference that a high value is followed by a low value, as during surge.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Technical Paper

Inclusion of Upstream Turbulent Inflow Statistics to Numerically Acquire Proper Fan Noise Characteristics

2016-06-15
2016-01-1811
To obtain realistic noise characteristics from CAA studies of subsonic fans, it is important to prescribe properly constructed turbulent inflow statistics. This is frequently omitted; instead it is assumed that the stochastic characteristics of turbulence, absent at the initial stage, progressively develops as the rotor inflicts the flow field over time and hence that the sound generating mechanism governed by surface pressure fluctuations are asymptotically accounted for. That assumption violates the actual interplay taking place between an ingested flow field and the surface pressure fluctuations exerted by the blades producing noise. The aim of the present study is to examine the coupling effect between synthetically ingested turbulence to sound produced from a subsonic ducted fan. The steady state inflow parameters are mapped from a precursor RANS simulation onto the inflow boundaries of a reduced domain to limit the computational cost.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

A System Approach for the Assessment of Cavitation Corrosion Damage of Cylinder Liners in Internal Combustion Engines

1993-03-01
930581
Modeling of liner cavitation corrosion is of increasing significance since new engine design trends could aggravate the problem. Cavitation corrosion is of a complex nature and is affected by numerous coupled factors. A system approach to analyze and assess cavitation corrosion damage is deemed necessary. The approach accounts for the macroscopic and microscopic aspects of the phenomenon that include modeling of piston dynamics, liner transient vibration, pressure wave propagation, bubble dynamics and their effect on material damage. Though detection methods can provide crucial insight of factors that influence the cavitation problem, analysis methods are required at the initial design stage to provide overall engine design optimization and reduce prototype development cost and time. This analytical diagnostic approach provides a powerful tool to give valuable and relatively quick insight in solving engine liner cavitation corrosion problems.
Technical Paper

Draw Bead Penetration as a Control Element of Material Flow

1993-03-01
930517
Draw beads are widely utilized as a mechanism for providing proper restraining force to a sheet in a forming operation. In this paper, numerical simulations using the nonlinear finite element method are conducted to model the process of drawing a sheet through various draw bead configurations to study the mechanics of draw bead restraint. By examing the sensitivity of the draw bead restraining force due to the change of the draw bead penetration, the work shows that the penetration has the potential to be a very good element for varying and controlling restraining force during the process. A closed-loop feedback control of draw bead penetration using a proportional-integral controller is achieved by the combination of the original finite element simulation and a special element which links penetration to a pre-defined restraining force trajectory.
Technical Paper

Microsensor Fusion Technology for Space Vehicle Reliability Enhancement

1994-04-01
941203
In this work, the goal of enhanced reliability through redundancy is explored. Two levels of fusion have been defined: the first is a fusion of sensors, redundant in both number and type, and the second is a statistical fusion of the resulting data at a software level. An intermediate preprocessing level is required to connect both fusions. The various types of sensors which are included are bulk micromachined flow, pressure and hydrogen sensors and a thin film poly-crystalline silicon temperature sensor. Individual sensors have been fabricated and packaged in arrays. Associated preprocessing has been designed to be able to handle all of the signals coming from each sensor and prepare them for statistical analysis. Data fusion algorithms have been written and tested.
Technical Paper

Practical Aspects of Perturbed Boundry Condition (PBC) Finite Element Model Updating Techniques

1997-05-20
971958
The perturbed boundary condition (PBC) model updating procedure has been developed to correct the finite element model [1]. The use of additional structural configurations adds more experimental information about the system and so better updating results can be expected. While it works well for simulated examples, practical limitations and additional requirements arise when it is used to update engineering structures. In this paper, the merits and the practical limitations of the techmques will be discussed in depth through the updating of a simulated system where the “measured” data is generated by computer and a real test structure where the experimentally measured data is noisy and distorted due to leakage. Useful suggestions and recommendations are drawn to guide the model updating of practical engineering structures.
Technical Paper

Identifying Alternative Movement Techniques from Existing Motion Data: An Empirical Performance Evaluation

2004-06-15
2004-01-2177
A manual task can be performed based on alternative movement techniques. Ergonomic human motion simulation requires consideration of alternative movement techniques, because they could bring different biomechanical, physiological, and psychophysical consequences. A method for identifying movement techniques from existing motion data was developed. The method is based on a JCV (Joint Contribution Vector) index and statistical clustering. A JCV quantifies a motion's underlying movement technique by computing contributions of individual body joint DOFs (degree-of-freedom) to the achievement of the task goal. Given a set of motions (motion capture data) achieving the same or similar task goals, alternative movement techniques can be identified by 1) representing the motions in terms of JCV and 2) performing a statistical clustering analysis. Performance of this movement technique identification method was evaluated based on a set of stoop and squat lifting motions.
Technical Paper

Introduction of Functional Periodicity to Prevent Long-Term Failure Mechanism

2006-04-03
2006-01-1203
One of the goals of designing engineering systems is to maximize the system's reliability. A reliable system must satisfy its functional requirements without failure throughout its intended lifecycle. The typical means to achieve a desirable level of reliability is through preventive maintenance of a system; however, this involves cost. A more fundamental approach to the problem is to maximize the system's reliability by preventing failures from occurring. A key question is to find mechanisms (and the means to implement them into a system) that will prevent its system range from going out of the design range. Functional periodicity is a means to achieve this goal. Three examples are discussed to illustrate the concept. In the new electrical connector design, it is the geometric functional periodicity provided by the woven wire structure. In the case of integrated manufacturing systems, it is the periodicity in scheduling of the robot motion.
Technical Paper

Whirl Analysis of an Overhung Disk Shaft System Mounted on Non-rigid Bearings

2022-03-29
2022-01-0607
Eigenvalues of a simple rotating flexible disk-shaft system are obtained using different methods. The shaft is supported radially by non-rigid bearings, while the disk is situated at one end of the shaft. Eigenvalues from a finite element and a multi-body dynamic tool are compared against an established analytical formulation. The Campbell diagram based on natural frequencies obtained from the tools differ from the analytical values because of oversimplification in the analytical model. Later, detailed whirl analysis is performed using AVL Excite multi-body tool that includes understanding forward and reverse whirls in absolute and relative coordinate systems and their relationships. Responses to periodic force and base excitations at a constant rotational speed of the shaft are obtained and a modified Campbell diagram based on this is developed. Whirl of the center of the disk is plotted as an orbital or phase plot and its rotational direction noted.
Technical Paper

The Mechanism of Spur Gear Tooth Profile Deformation Due to Interference-Fit Assembly and the Resultant Effects on Transmission Error, Bending Stress, and Tip Diameter and Its Sensitivity to Gear Geometry

2022-03-29
2022-01-0608
Gear profile deviation is the difference in gear tooth profile from the ideal involute geometry. There are many causes that result in the deviation. Deflection under load, manufacturing, and thermal effects are some of the well-known causes that have been reported to cause deviation of the gear tooth profile. The profile deviation caused by gear tooth profile deformation due to interference-fit assembly has not been discussed previously. Engine timing gear trains, transmission gearboxes, and wind turbine gearboxes are known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the mechanism of tooth profile deformation due to the interference-fit assembly in gear trains. A new analytical method to calculate the profile slope deviation change due to interference-assembly of parallel axis spur gears is presented.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Learning of Intelligent Controllers for Autonomous Unmanned Combat Aerial Vehicles by Genetic Cascading Fuzzy Methods

2014-09-16
2014-01-2174
Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) for future applications, it becomes apparent that on-board intelligent controllers will be necessary for these advanced systems. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent managers for these advanced unmanned craft through the novel means of a genetic cascading fuzzy system. In this approach, a genetic algorithm creates rule bases and optimizes membership functions for multiple fuzzy logic systems, whose inputs and outputs feed into one another alongside crisp data. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs intelligent controllers.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

Geometry Design of a Non-Pin Cycloid Drive for In-Wheel Motor

2015-06-15
2015-01-2172
Cycloid drives are widely used in the in-wheel motor for electric vehicles due to the advantages of large ratio, compact size and light weight. To improve the transmission efficiency and the load capability and reduce the manufacturing cost, a novel cycloid drive with non-pin design for the application in the in-wheel motor is proposed. Firstly, the generation of the gear pair is presented based on the gearing of theory. Secondly, the meshing characteristics, such as the contact zones, curvature difference, contact ratio and sliding coefficients are derived for performance evaluation. Then, the loaded tooth contact analysis (LTCA) is performed by establishing a mathematical model based on the Hertz contact theory to calculate the contact stress and deformation.
Technical Paper

Modeling the Three Piece Oil Control Ring Dynamics and Oil Transport in Internal Combustion Engines

2021-04-06
2021-01-0345
Three-piece oil control rings (TPOCR) are widely used in the majority of modern gasoline engines and they are critical for lubricant regulation and friction reduction. Despite their omnipresence, the TPOCRs’ motion and sealing mechanisms are not well studied. With stricter emission standards, gasoline engines are required to maintain lower oil consumption limits, since particulate emissions are strongly correlated with lubricant oil emissions. This piqued our interest in building a numerical model coupling TPOCR dynamics and oil transport to explain the physical mechanisms. In this work, a 2D dynamics model of all three pieces of the ring is built as the main frame. Oil transport in different zones are coupled into the dynamics model. Specifically, two mass-conserved fluid sub-models predict the oil movement between rail liner interface and rail groove clearance to capture the potential oil leakage through TPOCR. The model is applied on a 2D laser induced fluorescence (2D-LIF) engine.
Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
X