Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Planar Measurements of OH Radicals in an S.I. Engine Based on Laser Induced Flourescence

1994-03-01
940477
The planar laser induced fluorescence (PLIF) technique was applied to two dimensional visualization of OH radicals in a combustion flame. A frequency doubled Nd:YAG laser pumped dye laser was used to form a laser light sheet which excited the OH X2Π-A2Σ transition. A fluorescence image of the OH radical and a visible image of a combustion flame were simultaneously imaged by a pair of CCD cameras with image intensifiers. Measurement of the OH radical in the combustion flame could be carried out by using this PLIF technique without Mie scattering lights from soot particles and other optical disturbances. The PLIF technique was employed to study the OH radical in the combustion chamber of a spark ignition (S. I.) engine using gasoline as fuel. Measurements of the OH radical fluorescence were carried out under various operating conditions of mass burned fraction, swirl ratio and air-fuel ratio.
Technical Paper

Improving NOx and Fuel Economy for Mixture Injected SI Engine with EGR

1995-02-01
950684
A large quantity of recirculated exhaust gas is used to reduce NOx emissions and improve fuel economy at the same time. The effect of exhaust gas recirculation (EGR) was investigated under the stoichiometric and lean operating conditions and compared with the effect of lean operation without EGR. A mixture injected SI engine that has a mechanically driven mixture injection valve installed was prepared. In this engine, it is possible to charge combustible mixture independently from combustion air and recirculated exhaust gas introduced from intake port in order to stratify the mixture. The effect of the EGR ratio on NOx emissions and fuel consumption was measured under the stoichiometric and lean operating conditions. Due to the mixture distribution controlled by the mixture injection, a large quantity of recirculated exhaust gas could be introduced into the combustion chamber under the stoichiometric air/fuel ratio. The limit of EGR ratio was 48 %.
X