Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Study of Sound Source Characteristics for Vehicle Airborne Transfer Function Measurement

2013-09-24
2013-01-2343
Transfer function measurements are the basis for construction of conventional test based source-path-receiver model of a vehicle. Interior noise of a vehicle can be synthesized using source excitation (both acceleration at source and near source sound pressure level) and its corresponding transfer function (Vibro-Acoustic Transfer Function (VATF) and Acoustic Transfer Function (ATF) respectively) to the interior of vehicle. Ideally ATF should be linear and independent of sound source, dependent only on size of air cavities, body structure and its material characteristics in between receiver and source location. But practically because of the type of excitation signal used to excite the sound source and characteristics of sound source itself, there is a possibility of variations in amplitude of acoustic transfer function.
Technical Paper

Ventilation Improvement in a Non-AC Bus

2013-09-24
2013-01-2457
Ventilation is a crucial factor affecting passenger comfort in any vehicle. In a non-air-conditioned bus, ventilation caters to the dual requirement of fresh breathing air as well as providing a cooling sensation by enhanced evaporation of sweat. The higher the velocity of air around the passengers, the greater the cooling effect experienced by them. The ventilation mechanism of a non-air-conditioned bus is primarily the air flow through the windows due to relative motion between the bus and the air around it. This paper describes studies carried out to identify the right combination of open windows which would provide optimum air flow at the passenger head level plane in a bus. A bus model with 12 windows, 6 on each side is used for the study and air velocity at certain points in the head level plane, arising out of different combination of window openings is evaluated using CFD.
Technical Paper

Study on the Effect of Allied Components in the Life of a Parabolic Spring in Passenger Vehicle Application

2017-01-10
2017-26-0313
In today competitive world, gaining customer delight is the most vital part of an automotive business. Customers’ expectations are high which need to be satisfied limitless, to stay in the business. The major expectation of a commercial vehicle customer is a vehicle without failures which involves lower spares cost and downtime. The significance of a suspension system in the new age automobiles is getting advanced. There have been many improvements in the suspension system especially in leaf springs to provide a better ride comfort, and one such modern era implementation is the Parabolic Spring which comprises of fewer leaves with varying thickness from the center to the ends without inter-leaf friction. Study reveals that parabolic spring exhibits better ride comfort, but less life compared to a conventional leaf spring which leads to the increase in downtime of the vehicle.
Technical Paper

Driveline Noise Source Identification and Reduction in Commercial Vehicles

2018-06-13
2018-01-1474
Driveline (DL) is one of the major sources of noise and vibration which excites the vehicle structures across a wide band of frequencies in commercial vehicles (CV). Current work focuses on the driveline noise source identification and its reduction in a heavy commercial vehicle. An abnormal noise is perceived in a CV in high gears at high speeds. This annoying DL noise is subjectively perceived in geared and neutral coast down conditions. Objective NVH assessment including near source noise and vibration of the driveline components was performed to quantify the noise. Initial test results revealed that the DL excitations are aggravated in auxiliary gear box as broadband rattle noise. The design configuration of the DL components and related subsystems such as propeller shafts and gearbox etc. was studied to the find root cause of the excitations. The driveline configuration including the auxiliary gearbox tooth geometry is also scrutinized and modified.
Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

Operational Deflection Shapes & Resonance Analysis Using Road Simulator

2019-01-09
2019-26-0323
In today’s competitive world to stay in the commercial vehicle business, technological advancement is vital. Understanding the various operation modes of a vehicle considering the vibration becomes essential for developing a vehicle free from failures. ODS analysis is a method which is used to visualise the vibration pattern of a vehicle when influenced by known external operating forces. ODS provide very useful information for understanding and evaluating the behavior of the vehicle. This paper discusses about the experiments carried out in vehicle. It details the process of data collection at varying frequency input, understanding the modes at various frequencies, identifying the resonant frequency of various components, understanding the comparison between road inputs and resonance frequencies and the transfer of vibration (Transmissibility) from one component to another.
Technical Paper

Field Failure Simulation of a Non-reactive Suspension Tie Rod for Heavy Commercial Vehicle Using a Road Simulator

2019-01-09
2019-26-0350
The suspension system in a vehicle isolates the frame and body from road shocks and vibrations which would otherwise be transferred to the passengers and goods. Heavier goods vehicles use tandem axles at the rear for load carrying. Both the axles should be inter-connected to eliminate overloading of any one axle when this goes over a bump or a ditch. One of the inter-connecting mechanism used is leaf spring with tie rod, bell crank & linkages, when the first rear axle moves over a bump, the linkages equalize the loading on the second rear axle. This paper details about the failure analysis methodology to simulate the tie rod field failure using a six poster road simulator and to identify the root cause of the failure and further corrective actions.
Technical Paper

Coupled FEM-DEM for Determination of Payload Distribution on Tipper Load Body

2024-01-16
2024-26-0255
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation.
Technical Paper

Determination of the Structural Member Life Cycle without Undergoing Complete Testing Using CAE Input for an Improved Design after Failure Correlation

2024-01-16
2024-26-0333
This case study involves the failure analysis of the wheel arch structure for a commercial truck. The wheel arch is an important vehicle trim aggregate from both the regulatory perspective (spray suppression) as well as from the aesthetics of the truck. But, the durability of this part is affected by the vehicle architecture, vehicle load capacity as well as the operating conditions. This is more critical due to the nature of the overhang experienced by the mounting bracket assemblies that hold these wheel arches/mud flaps. This generally consist of tubular and sheet metal welded structures bolted on to the main chassis long members. These failures were observed in a legacy vehicle, where very little details of the complete vehicle digital simulation and testing performance were readily available.
Technical Paper

Vehicle Handling Sensitivity Analysis through Numerical Simulation in Commercial Vehicles

2015-09-29
2015-01-2736
Vehicle handling is an important attribute that is directly related to vehicle safety. The rapid development of road infrastructure has resulted in a greater focus on safety and stability. Commercial vehicle stability and safety assumes higher significance because of high center of gravity (CG) and heavier loads. A gamut of parameters influence vehicle handling directly and indirectly. However, it is quite difficult to gauge through physical testing, the extent of each parameter's influence on handling. Therefore, this paper examines vehicle handling by way of a sensitivity analysis through numerical simulation. A prototype vehicle is also instrumented and tested to confirm trends and validate the results of the simulation. An Intermediate Commercial Vehicle (ICV) with Gross Vehicle Weight (GVW) of around 13 tonnes is modeled and parameters like wheelbase and tyre stiffness are altered and the effect of these changes on handling parameters (yaw rate, lateral acceleration) is observed.
X