Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

Design Status of ARES for Accomodation on the ISS

2003-07-07
2003-01-2623
During the last years extensive work has been done to design and develop the Closed Loop Air Revitalisation System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand. The current activities concentrate on the development of a full-scale demonstrator with ‘engineering model’ quality. The demonstrator will include the functions of CO2 concentration, CO2 reduction and oxygen generation. All components will fit into one ISPR. The design will minimize the number of external interfaces in order to achieve a high degree of independence with respect to accommodation on the ISS. The paper describes the current development status and touches on critical technology tests for performance optimization.
X