Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Journal Article

Experimental and Numerical Study of Heat Transfer at the Underbody of a Production Car

2014-04-01
2014-01-0582
The optimization of the flow field around new vehicle concepts is driven by aerodynamic and thermal demands. Even though aerodynamics and thermodynamics interact, the corresponding design processes are still decoupled. Objective of this study is to include a thermal model into the aerodynamic design process. Thus, thermal concepts can be evaluated at a considerably earlier design stage of new vehicles, resulting in earlier market entry. In a first step, an incompressible CFD code is extended with a passive scalar transport equation for temperature. The next step also accounts for buoyancy effects. The simulated development of the thermal boundary layer is validated on a hot flat plate without pressure gradient. Subsequently, the solvers are validated for a heated block with ground clearance: The flow pattern in the wake and integral heat transfer coefficients are compared to wind tunnel simulations. The main section of this report covers the validation on a full-scale production car.
Technical Paper

Investigation on Safety Improvements by Lighting for Pedestrians and Cyclists

2020-04-14
2020-01-0633
The paper will describe actual investigations on safety improvements by new lighting functions. Especially the new chance of projections on the road surface either by simple reflector technology or by modern signature and pattern projection will be investigated. Different prototype patterns will be checked by a set of new parameters, e.g. reaction time to signals, clear understanding, minimum and optimum visual contrasts. The results show that high contrasts and dynamic effects are most effective.
Technical Paper

Experimental and Numerical Investigations on Isolated, Treaded and Rotating Car Wheels

2020-04-14
2020-01-0686
Wheels on passenger vehicles cause about 25% of the aerodynamic drag. The interference of rims and tires in combination with the rotation result in strongly turbulent wake regions with complex flow phenomena. These wake structures interact with the flow around the vehicle. To understand the wake structures of wheels and their impact on the aerodynamic drag of the vehicle, the complexity was reduced by investigating a standalone tire in the wind tunnel. The wake region behind the wheel is investigated via Particle Image Velocimetry (PIV). The average flow field behind the investigated wheels is captured with this method and offers insight into the flow field. The investigation of the wake region allows for the connection of changes in the flow field to the change of tires and rims. Due to increased calculation performance, sophisticated computational fluid dynamics (CFD) simulations can capture detailed geometries like the tire tread and the movement of the rim.
Journal Article

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-04-12
2011-01-0175
The paper describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The paper illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Technical Paper

Dual Line Exhaust Design Optimisation to Maximize SCR Catalyst Efficiency thru Improved Ammonia Distribution

2009-04-20
2009-01-0914
The SCR after treatment system is already in production for passenger car engines with a single exhaust system. In this case, the exhaust system has to be designed very carefully to optimize the Ammonia distribution on the catalyst and therefore the DeNOx potential. The application to V8 engines with two turbochargers delivering the gas into two separated DOC & DPF units is an additional challenge. This paper describes the different optimization steps of such an exhaust system and the tools used during this work. After a design phase to integrate the SCR system in the exhaust geometry, a first CFD study was conducted to evaluate the performance of the basic system using one or two urea injectors. An optimization of the connection of the two tubes, directly in front of the SCR catalyst, has been designed using further CFD calculations as well as a marker gas SF6 on a cold flow bench.
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

Comparison of Numerical Simulations with Experiments of Bluff Bodies Including Under-Hood Flow

2011-04-12
2011-01-0171
Computational Fluid Dynamics (CFD) is state of the art in the aerodynamic development process of vehicles nowadays. With increasing computer power the numerical simulations including meshing and turbulence modeling are capturing the complex geometry of vehicles and the flow field behavior around and behind a bluff body in more detail. The ultimate goal for realistic automotive simulations is to model the under-hood as well. In this study vehicle simulations using the finite volume open source CFD program OpenFOAM® are validated with own experiments on a modified generic quarter-scale SAE body with under-hood flow. A model radiator was included to take account of the pressure drop in the under-hood compartment. Force and pressure measurements around the car, total-pressure and hot-wire measurements in the car flow field and surface flow patterns were simulated and compared with the experiment.
Technical Paper

Experimental Heat Flux Analysis of an Automotive Diesel Engine in Steady-State Operation and During Warm-Up

2011-09-11
2011-24-0067
Advanced thermal management systems in passenger cars present a possibility to increase efficiency of current and future vehicles. However, a vehicle integrated thermal management of the combustion engine is essential to optimize the overall thermal system. This paper shows results of an experimental heat flux analysis of a state-of-the-art automotive diesel engine with common rail injection, map-controlled thermostat and split cooling system. Measurements on a climatic chamber engine test bench were performed to investigate heat fluxes and energy balance in steady-state operation and during engine warm-up from different engine start temperatures. The analysis includes the influence of the operating point and operating parameters like EGR rate, injection strategy and coolant temperature on the engine energy balance.
Technical Paper

Hiplock Effect on the Hybrid III Dummy

1996-02-01
960452
In compliance with US Crash Standard FMVSS 208, from September 1, 1997 the Hybrid III dummy will be the only version permitted In the series of measurements conducted by several automobile companies, it has transpired that the hip joint exerts a negative influence on deceleration of the thorax This topic is also being investigated by SAE working groups Various petitions on this subject have already been filed with NHTSA This paper analyzes the interaction of the thorax and thigh on the Hybrid III dummy in an effort to determine how far deceleration of the thorax is increased.
Technical Paper

Investigations on the Deposition Behaviour of Brake Wear Particles on the Wheel Surface

2021-10-11
2021-01-1301
The deposition behavior of brake wear particles on the surface of a wheel and the mechanisms on it have not been fully understood. In addition, the proportion of brake wear particles deposited on the wheel surface compared to the total emitted particles is almost unknown. This information is necessary to evaluate the number- and mass-related emission factors measured on the inertia dynamometer and to compare them with on-road and vehicle-related emission behaviour. The aim of this study is to clarify the deposition behavior of brake particles on the wheel surface. First, the real deposition behaviour is determined in on-road tests. For particle sampling, collection pads are adapted at different positions of a front and rear axle wheel. In addition to a Real Driving Emissions (RDE)-compliant test cycle, tests are performed in urban, rural and motorway sections to evaluate speed-dependent influences.
Technical Paper

Investigations on Visibility of Digital Road Projections

2022-03-29
2022-01-0799
This paper covers research findings on digital projections on the road. Data is provided for the root cause analysis of non-existing distraction proven by several studies. The study describes if and in which geometrical space road projections are visible to other road traffic participants. Such participants can be e.g. oncoming, passing drivers or pedestrians standing aside the road. The paper data shows where projections are recognizable and assignable to the original intention of the projection. A grid was created to identify the areas where digital projections could be understood and where the digital projections were just illegible. A dominant factor is the grazing incidence. The photons are distributed over a larger area and only the driver’s view makes a virtual compression of the illuminated area in order to make the signals legible. The results show that distraction for other road participants is unlikely for any position outside very limited areas.
Technical Paper

Investigation of Horizontal Light Function Positions on the Distance Estimation by Test Persons to Ensure Road Safety

2023-04-11
2023-01-0918
When designing new vehicles, the legal requirements of the countries in which the vehicles are homologated must be observed and implemented. The manufacturers try to consider the legal framework of the UN-ECE (United Nations Economic Commission for Europe), CCC (China Compulsory Certification) and FMVSS (Federal Motor Vehicle Safety Standard) 108 in the same vehicle to keep the variance low. For the appearance of the vehicle, the position of the light modules in the front of the vehicle is important. In addition to the surface requirements of lighting functions, the positions of the low beam (LB), high beam (HB) and the position of daytime running lights (DRL) are also regulated. When it comes to these mounting positions, the legislation between the US and the EU differs quite significantly.
Technical Paper

Assessing the Sensitivity of Hybrid RANS-LES Simulations to Mesh Resolution, Numerical Schemes and Turbulence Modelling within an Industrial CFD Process

2018-04-03
2018-01-0709
A wide-ranging investigation into the sensitivity of the hybrid RANS-LES based OpenFOAM CFD process at Audi was undertaken. For a range of cars (A1, TT, Q3 & A4) the influence of the computational grid resolution, turbulence model formulation and spatial & temporal discretization is assessed. It is shown that SnappyHexMesh, the Cartesian-prismatic built-in OpenFOAM mesher is unable to generate low y+ grids of sufficient quality for the production Audi car geometries. For high y+ grids there was not a consistent trend of additional refinement leading to improved correlation between CFD and experimental data. Similar conclusions were found for the turbulence models and numerical schemes, where consistent improvements over the baseline setup for all aerodynamic force coefficients were in general not possible. The A1 vehicle exhibited the greatest sensitivity to methodology changes, with the TT showing the least sensitivity.
Technical Paper

Precise Dummy Head Trajectories in Crash Tests based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values

2015-04-14
2015-01-1442
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
Technical Paper

Reliability of Engineering Methods in Heavy-Vehicle Aerodynamics

2017-08-25
2017-01-7001
The improved performance of heavy-duty vehicles as transport carriers is essential for economic reasons and to fulfil new emission standards in Europe. A key parameter is the aerodynamic vehicle drag. An enormous potential still exists for fuel saving and reducing exhaust emission by aerodynamic optimisation. Engineering methods are required for developments in vehicle aerodynamics. To assess the reliability of the most common experimental testing and numerical simulation methods in the industrial design process is the objective of this article. Road tests have been performed to provide realistic results, which are compared to the results obtained by scale-model wind tunnel experiments and time-averaged computational fluid dynamics (CFD). These engineering methods are evaluated regarding their deployment in the industrial development process. The investigations focus on the separated flow region behind the vehicle rear end.
Journal Article

The Aerodynamic Development of the New Audi Q5

2017-03-28
2017-01-1522
The aerodynamic development of the new Audi Q5 (released in 2017) is described. In the course of the optimization process a number of different tools has been applied depending on the chronological progress in the project. During the early design phase, wind tunnel experiments at 1:4 scale were performed accompanied by transient DES and stationary adjoint simulations. At this stage the model contained a detailed underbody but no detailed engine bay for underhood flow. Later, a full scale Q5 model was built up for the aerodynamic optimization in the 1:1 wind tunnel at Audi AG. The model featured a detailed underbody and engine bay including original parts for radiators, engine, axles and brakes from similar vehicles. Also the 1:1 experiments were accompanied by transient DES and stationary adjoint simulations in order to predict optimization potential and to better understand the governing flow.
Technical Paper

Application of the Adjoint Method for Vehicle Aerodynamic Optimization

2016-04-05
2016-01-1615
The aerodynamic optimization of an AUDI Q5 vehicle is presented using the continuous adjoint approach within the OpenFOAM framework. All calculations are performed on an unstructured automatically generated mesh. The primal flow, which serves as input for the adjoint method, is calculated using the standard CFD process at AUDI. It is based on DES calculations using a Spalart-Allmaras turbulence model. The transient results of the primal solution are time averaged and fed to a stationary adjoint solver using a frozen turbulence assumption. From the adjoint model, drag sensitivity maps are computed and measures for drag reduction are derived. The predicted measures are compared to CFD simulations and to wind tunnel experiments at 1:4 model scale. In this context, general challenges, such as convergence and accuracy of the adjoint method are discussed and best practice guidelines are demonstrated.
Book

Aerodynamics of Road Vehicles, Fifth Edition

2015-12-30
The detailed presentation of fundamental aerodynamics principles that influence and improve vehicle design have made Aerodynamics of Road Vehicles the engineer’s “source” for information. This fifth edition features updated and expanded information beyond that which was presented in previous releases. Completely new content covers lateral stability, safety and comfort, wind noise, high performance vehicles, helmets, engine cooling, and computational fluid dynamics.
Book

Internal Combustion Engine Handbook, 2nd English Edition

2016-03-07
More than 120 authors from science and industry have documented this essential resource for students, practitioners, and professionals. Comprehensively covering the development of the internal combustion engine (ICE), the information presented captures expert knowledge and serves as an essential resource that illustrates the latest level of knowledge about engine development. Particular attention is paid toward the most up-to-date theory and practice addressing thermodynamic principles, engine components, fuels, and emissions. Details and data cover classification and characteristics of reciprocating engines, along with fundamentals about diesel and spark ignition internal combustion engines, including insightful perspectives about the history, components, and complexities of the present-day and future IC engines.
X