Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental and Numerical Investigations on Isolated, Treaded and Rotating Car Wheels

2020-04-14
2020-01-0686
Wheels on passenger vehicles cause about 25% of the aerodynamic drag. The interference of rims and tires in combination with the rotation result in strongly turbulent wake regions with complex flow phenomena. These wake structures interact with the flow around the vehicle. To understand the wake structures of wheels and their impact on the aerodynamic drag of the vehicle, the complexity was reduced by investigating a standalone tire in the wind tunnel. The wake region behind the wheel is investigated via Particle Image Velocimetry (PIV). The average flow field behind the investigated wheels is captured with this method and offers insight into the flow field. The investigation of the wake region allows for the connection of changes in the flow field to the change of tires and rims. Due to increased calculation performance, sophisticated computational fluid dynamics (CFD) simulations can capture detailed geometries like the tire tread and the movement of the rim.
Technical Paper

Application of Energy Flow Analysis Focused on Path Visualization into Vehicle Design

2010-10-17
2010-36-0505
The development of new design tools to predict the vibro-acoustic behavior within the vehicle development process is of essential importance to achieve better products in an ever shorter timeframe. In this paper, an energy flow post-processing tool for structural dynamic analysis is presented. The method is based on the conversion of conventional finite element (FE) results into energy quantities corresponding with each of the vehicle subcomponents. Based on the global dynamic system behavior and local subcomponent descriptions, one can efficiently evaluate the energy distribution and analyze the vibro-acoustic behavior in complex structures. By using energy as a response variable, instead of conventional design variables as pressure or velocity, one can obtain important information regarding the understanding of the vibro-acoustic behavior of the system.
Technical Paper

Measuring a Geometry by Photogrammetry: Evaluation of the Approach in View of Experimental Modal Analysis on Automotive Structures

2001-04-30
2001-01-1473
The very first step when starting an experimental modal analysis project is the definition of the geometry used for visualization of the resulting mode shapes. This geometry includes measurement points with a label and corresponding coordinates, and usually also connections and surfaces to allow a good visualization of the measured mode. This step, even if it sounds straightforward, can be quite time consuming and is often done in a rather approximate way. Photogrammetry is a technique that extracts 2D or 3D information through the process of analyzing and interpreting photographs. It is widely used for the creation of topographic maps or city maps, and more and more for quick modeling of civil engineering structures or accident reconstruction. The purpose of this paper is to evaluate the use of this technique in the context of modal testing of automotive structures.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

On-Line Sound Brush Measurement Technique for 3D Noise Emission Studies

2013-05-13
2013-01-1973
A key issue in noise emission studies of noise producing machinery concerns the identification and analysis of the noise sources and their interaction and radiation into the far field. This paper presents a new acoustic measurement technique for noise source identification in stationary applications. The core of the technology is a handheld measurement instrument combining a position and orientation tracking device with a 3D sound intensity probe. The technique allows an on-line 3D visualization of the sound field while moving the probe freely around the test object. By focusing on the areas of interest, troublesome areas can be identified that require further in-depth analysis. The measurement technique is flexible, interactive and widely applicable in industrial applications. This paper explains the working principle and characteristics of this new technology and positions it to existing methods like traditional sound intensity testing and array techniques.
Technical Paper

New Acoustic Test Facilities of BMW

1985-05-15
850992
BMW has introduced new test stands for noise measurements on passenger cars and motorcycles. Information is given on room conditions, machinery equipment, sound levels, frequency ranges and types of measurement. The semi-anechoic room is designed for measuring the sound distribution emitted by a single vehicle. Road influence is simulated by a reflecting floor and a roller-dynamometer. The free field sound distribution in terms of distance and direction is measured in the anechoic room. This room has high-precision installations for sound source identification and noise mapping. The reverberation room serves to measure sound power emitted by the test object. Its second purpose is to subject the bodywork to a high-power external sound source and to measure the sound-deadening effect of the passenger compartment. In conclusion, the presentation provides reports on the initial experience with these test facilities.
Technical Paper

Investigations on Visibility of Digital Road Projections

2022-03-29
2022-01-0799
This paper covers research findings on digital projections on the road. Data is provided for the root cause analysis of non-existing distraction proven by several studies. The study describes if and in which geometrical space road projections are visible to other road traffic participants. Such participants can be e.g. oncoming, passing drivers or pedestrians standing aside the road. The paper data shows where projections are recognizable and assignable to the original intention of the projection. A grid was created to identify the areas where digital projections could be understood and where the digital projections were just illegible. A dominant factor is the grazing incidence. The photons are distributed over a larger area and only the driver’s view makes a virtual compression of the illuminated area in order to make the signals legible. The results show that distraction for other road participants is unlikely for any position outside very limited areas.
Technical Paper

Investigating the Perception of Pedestrians in Car 2 Human Communication: A Case Study Using Different Symbols and Dynamics to Communicate Via an Angular Restricted eHMI and Road Projections

2022-03-29
2022-01-0800
It has been shown that additional light signals are beneficial in the car 2 human communication. This study addresses detection, discomfort, brightness, recognition of intention and the perception of safety, of different symbols and dynamics used for communication. Splitted in two parts, the first use case is a lane crossing situation, where the car gives instructions to the pedestrian via an angular restricted external Human Machine Interface (eHMI) in the driver’s window. Results show that a symbol which blinks first and is then statically shown leads to fast and best detection. The intention of a red stop hand and green pedestrian is clearly understood. A combination of a near road-projection and the eHMI leads to confusion. An angle of 55° to 25° has been proven to be sufficient for displaying the information. In the second use case a cyclist is approaching the automated vehicle (AV) from behind and passes on a bicycle path.
Technical Paper

Application of a New Method for On-Line Oil Consumption Measurement

1999-10-25
1999-01-3460
Fast and exact measurement of engine oil consumption is a very difficult task. Our aim is to achieve this measurement at a common test bed without engine modifications. We resolved this problem with a new technique using Laser Mass Spectrometry to detect appropriate tracers in the raw engine exhaust. The tracers are added to the engine oil. to the engine oil. For detection of these tracers we use a Laser Mass Spectrometer (LAMS). This is a combination of resonant laser ionization (with an all-solid-state laser) and Time-of-Flight Mass Spectrometry. Currently this is the only way to detect oil originated molecules (like our tracers) in the raw exhaust very fast (50 Hz) and sensitive (ppb-region). Thus, engine mapping of oil consumption over load and speed can be performed in 1-2 days with about 90 measurements. Even measurement during dynamic engine operation is possible, but not quantitative (due to the lack of information about dynamic exhaust gas mass flow).
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
X