Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Performance Evaluation of EV/HEV Systems Using xEV Offline Simulator

2017-01-10
2017-26-0097
This paper introduces xEV Simulator- A MATLAB based simulator platform capable of analyzing EV/HEV powertrain system in both backward and forward modelling. xEV Simulator employs Forward Simulation for drive-cycle performance evaluations and Backward simulation for powertrain component sizing and support xEV powertrain design. The powertrain subsystems are modelled in Simulink. This enables the model based system simulation and further controller prototyping and HiL testing. xEV Offline Simulator GUI enables user to simulate standard EV/HEV configurations with standard drive-cycles. The model parameters of different component subsystems can be configured. The Backward modelling and simulation support the estimation of subsystem values like Propulsion motor, Energy storage, etc., to perform as per the drive-cycle requirement.
Journal Article

Machine Learning Based Model Development with Annotated Database for Indian Specific Object Detection

2021-09-22
2021-26-0127
Now-a-days, Advanced driver-assistance systems (ADAS) is equipping cars and drivers with advance information and technology to make them become aware of the environment and handle potential situations in better way semi-autonomously. High-quality training and test data is essential in the development and validation of ADAS systems which lay the foundation for autonomous driving technology. ADAS uses the technology like radar, vision and combinations of various sensors including LIDAR to automatize dynamic driving tasks like steering, braking, and acceleration of vehicle for controlled and safe driving. And to integrate these advance technologies, the ADAS needs labeled data to train the algorithm to detect the various objects and moments of driver. Image annotation is one the well-known service to create such training data for computer vision. There are number of open source annotated datasets available viz. COCO, KITTI etc.
Technical Paper

Synthetic Scenario Generation from Real Road Data for Indian Specific ADAS Function Verification and Validation

2024-01-16
2024-26-0020
Advanced Driver Assistance Systems (ADAS) play a crucial role in enhancing road safety by providing intelligent assistance to drivers. To ensure the reliability and effectiveness of ADAS functions, rigorous verification and validation processes are necessary. One critical aspect of this process is scenario generation, which involves creating diverse and representative driving scenarios for testing and evaluating ADAS functions. This paper proposes a novel approach for synthetic scenario generation specifically tailored for Indian road conditions. The approach leverages real-time road data collected from various sources, including camera sensors, Lidar sensor, GPS devices, and traffic monitoring systems. The collected data is processed and analyzed to extract relevant information, such as road geometries, traffic patterns, and environmental conditions.
Technical Paper

Development & Testing of a Camera-Based Driver Monitoring System

2024-01-16
2024-26-0028
One of the primary reasons for road accidents is driving while distracted or drowsy. Often, long and monotonous road journeys lead to distracted or drowsy driving. Therefore, there is a need for a system which alerts a distracted or drowsy driver. Moreover, as the levels of autonomy move beyond SAE Level 2, the system assumes a larger share of the dynamic driving task. Under challenging circumstances, the system might ask the driver to take back vehicle control. To guarantee safety, it’s crucial to monitor the driver’s condition in order to assess their readiness to regain control of the vehicle. An advanced safety feature known as a driver monitoring system (DMS), sometimes referred to as a driver state sensing (DSS) system, is designed to monitor a driver’s attentiveness and alertness, providing warnings or alerts to refocus their attention on driving when drowsiness or distraction is detected.
Technical Paper

The Impact of Uncertainty Quantification and Sensitivity Analysis in CAE Simulation based Regulatory Compliance

2024-01-16
2024-26-0294
Computer-aided engineering (CAE) is a routinely used technology for the design and testing of road vehicles, including the simulation of their response to an impact. To increase automotive industry competitiveness by reducing physical test-based type approval and to improve road safety, recent initiatives have been taken by both industry and public authorities to promote the use of virtual testing through numerical simulation as an alternative way to check regulatory compliance. [1] To ensure acceptance of this alternative method, the accuracy of the simulation models and procedures needs to be assured and rated independently of the modelling process, software tools, and computing platform. Similarly, it is also imperative to understand the uncertainties emerging out of different component design parameters and analyze their sensitivity towards producing deviations in the reported results as per the requirements of the regulatory standard.
Technical Paper

Genesis of the “Automotive Homologation 4.0” Framework for India

2024-01-16
2024-26-0360
The term Industry 4.0 is well known in contemporary automotive landscape. It encompasses a smart integrated framework of IIoT (Internet of Things) and industrial automation with machine learning, artificial intelligence and big data analytics to arrive at optimal solutions to running the processes in a streamlined, efficient and effective manner. Industry 4.0 has assumed critical significance in the contemporary era of people working from remote locations to operate processes in order to build products, thereby ensuring business continuity. Consequently, it follows that if industry 4.0 is applied to automotive homologation activity, it will lead to a standardized evaluation, consistent fidelity of testing, accurate judgement of the product under test with regards to its certification, and most importantly, timed delivery to release in the market. The author hereby elucidates a unified Industry 4.0 Framework for Automotive homologation in India which is the need of the hour.
Technical Paper

Generation of Tire Digital Twin for Virtual MBD Simulation of Vehicles for Durability, NVH and Handling Evaluation

2024-01-16
2024-26-0301
With the recent development in virtual modelling and vehicle simulation technology, many OEM’s worldwide are using digital road profiles in virtual environment for vehicle durability load prediction and virtual design evaluation. For precise simulation results, it is important to have the tire digital twin which is the realistic representation of tire in the virtual environment. The study comprises of discussion about different types of tire models such as empirical, solid model, rigid ring model and flexural ring models such as Pacejka, MF Swift, CD tire, F tire etc. and also the complexity involved in development of these tire models. Generation of virtual tire model requires highly sophisticated test rigs as well as vehicle level testing with Wheel Force transducers and other vehicle dynamics sensors. The large number of data points generated with testing are converted in standard TYDEX format to be further processed in various software tool for virtual model generation.
X