Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Development of Full Car Model for Ride Analysis of Light Duty Bus using MATLAB Simulink

2021-09-22
2021-26-0088
Ride is considered to be one of the crucial criterion for evaluating the performance of a vehicle. Automobile industry is striving for improvement in designs to provide superior passenger comfort in Commercial vehicles segment. In Industry, Quarter-car model has been used for years to study the vehicle’s ride dynamics. But due to lower DOF involved in quarter car, the output accuracy is somewhat compromised. This paper aims in development of a 7 DOF full-car Model to perform the ride- comfort analysis for Light Duty 4*2 Commercial Bus using MATLAB Simulink which can be used to tune the suspension design to meet the required ride-comfort criteria. Firstly, experimental data and Physical Parameters are collected by performing Practical Test on commercial Bus on different road profiles. Secondly, a Full Car Mathematical Model with 7 DOF has been developed for a bus using MATLAB Simulink R2018a.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

Sound Quality Evaluation of a Brake and Clutch Pedal Assembly used for Automotive Applications

2017-01-10
2017-26-0194
Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
Technical Paper

Integrated Approach for Development of Air Suspension System for a SUV Category Vehicle Using Analytical and Experimental Tools

2017-01-10
2017-26-0340
Air suspension systems had been introduced in automobiles since 1950s. These systems are being explored to improve the ride comfort, handling stability and also serve as a medium for better cargo protection. These system are well developed for buses and high end passenger sedans, also have feasibility for adapting for wide range of configurations of suspension system and axle. Passenger cars and Sports Utility Vehicle (SUV) pickup category of vehicle offers different challenges such as space availability, spring selection and characterization that need to be addressed for successful implementation of air suspension in these category vehicles. This work defines methodology to implement air suspension system in SUV Pickup category vehicle. Paper work includes concept study, mathematical co-relation, and prediction of air spring characteristics and integration of experimental and analytical tool for development of air suspension system.
Technical Paper

A Unique Approach for Motion Planning for Autonomous Vehicle Using Modified Lattice Planner

2021-09-22
2021-26-0121
In order to travel in a chaotic and dynamic environment, an autonomous vehicle requires a motion plan. This motion plan ensures collision free, optimum travel without violating any traffic rules. The optimum solution for path planning problem exists in higher dimensions, however, with the help of useful heuristics the problem can be solved in real time, which is required for real time operation of an autonomous vehicle. There are different well established techniques available to plan a collision free kinematically traversable path. One of such techniques is called conformal Lattice planner. However, the legacy version of conformal lattice planner is not optimized and also is prone to fail under specific dynamic environment conditions. Moreover, the legacy version of conformal lattice planner is also not road aware. Due to this reason it is a semi optimized way to solve the motion planning problem.
Technical Paper

Development of Road to Lab Steering Test Rig (ROLAST)

2017-01-10
2017-26-0315
The Steering system is one of the most safety critical systems in an automobile. With time the durability, reliability and the fine-tuning of the parameters involved in this subsystem have increased along with the competitiveness of the market. In a competitive market, accelerated testing is the key to shorter development cycles. It is observed that the majority of component manufacturers have a preference on vehicle level testing to achieve their development goals. The vehicle level trials are time consuming and lack the control and repeat-ability of a laboratory environment. This paper describes the development of a steering test rig designed to simulate the disturbances experienced on road within a controlled laboratory environment. The five axis steering rig would allow simulation of individual road wheel displacement along with steering wheel angle input and lateral steering rack displacements. The rig also is designed to be adaptable to a range of vehicle categories.
Technical Paper

Design and Development of a Retrofit Solution for Converting a Conventional LCV into Parallel Hybrid Electric Vehicle

2019-01-09
2019-26-0117
In today’s scenario, the emission norms are getting stringent day by day due to an increased level of pollution. The world is shifting towards low carbon footprint which made it necessary to adopt efficient technologies with fewer emissions. The hybridization of vehicles has resulted in improved efficiency with lower emissions which can fulfil the near future emission norms. Retrofitting of hybrid components into a conventional IC engine vehicle is so far the best way to achieve better performance both economically and technologically. This research is primarily focused on the design and development of a novel retrofit solution of P3x architecture for the light commercial vehicle. This retrofit solution is different from other hybrid solutions in terms of powertrain. It contains an innovative add-on powertrain along with the existing powertrain. This additional powertrain consists of a pair of helical gears followed by a chain and sprocket as a coupler for traction motor.
Technical Paper

Derivation of Non-linear Stiffness Characteristics for Lumped Uniaxial Springs from Hyperelastic Material Constitutive Models

2014-04-28
2014-28-0038
Hyperelastic material simulations are commonly performed in commercial FE codes due to availability of sophisticated algorithms facilitating virtual characterization of such materials in FEA easily. However, the solution time required is longer in FEA. Especially when excitation frequencies do not interfere with structural modes, flexible multibody simulation offers a lucrative and computationally inexpensive alternative. However, it is difficult to directly characterize hyperelastic materials in commercial MBS simulation codes, so the reduced solution time comes at the cost of decreased simulation accuracy, especially if the designer is provided with crude stress - strain test data. Hence, the need is to overcome the drawbacks in FEA and multibody codes, as well as to leverage best of both these codes simultaneously.
Technical Paper

Effect of Ambient Temperature and Inflation Pressure on Tire Temperature

2019-01-09
2019-26-0360
Tire failure is identified as a major cause of accidents on highways around the world in the recent past. A tire burst leads to loss of control of the vehicle which ends up in a catastrophe. There are various factors which are accounted for a tire burst. Heat buildup, aging of tire and cracks on tires are the major ones which are identified. A superior ability of the tire to dissipate the heat generated during operation is a major factor which prevents a tire failure. Other factors such as ambient temperature, inflation pressure etc. contributes to heat buildup which may ultimately result in tire failure. A combination of these factors might manifest as a tire failure at high speeds, the latter being an immediate cause of heat buildup. A dormant crack in the tire might develop if the temperature and pressure conditions are favorable, thus giving away at the weakest point. With regard to the temperature conditions, road conditions, inflation pressure checks etc.
Technical Paper

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

2019-11-21
2019-28-2394
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Ride-Comfort Analysis for Commercial Truck Using MATLAB Simulink

2019-11-21
2019-28-2428
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations.
Technical Paper

A Novel Method for Active Vibration Control of Steering Wheel

2019-01-09
2019-26-0180
Active control mainly comprises of three parts; sensor-detects the input disturbance, actuator -provide counter measures and control logic -processing of input disturbances and converting it into logical output. Lot of methods for active vibration control are available but this paper deals with active control of steering wheel vibrations of an LCV. A steering wheel is, one such component that directly transfers vibration to the driver. Active technique described here is implemented using accelerometer sensor, IMA (Inertial Mass Actuator) and feed forward Fx-LMS (Filtered reference Least Mean Square) control algorithm. IMA is a single-degree-of-freedom oscillator. To enable a control, IMA needs to be coupled to the structure at a single point, acting as an add-on to the passive system. Fx-LMS is a type of adaptive algorithm which is computationally simple and it also includes compensation for secondary path effects by using an estimate of the secondary path.
Technical Paper

Experimentation for Evaluation of Real Driving Emission Test Routes in India for LDVs

2019-01-09
2019-26-0150
With introduction of Bharat Stage VI (BS VI) norms from 1st April 2020, automotive industry will observe one of most stringent Indian emission regulation implementation in line with International standards. The Bharat Stage VI (BS VI) regulation also mandates for Real Driving Emission (RDE) measurement from 1st April 2020 for data collection and subsequently establishment of RDE compliance Factor (CF) by 1st April 2023. Indian RDE test procedure will be largely based on European RDE with minor changes in terms of climatic conditions, traffic pattern, speed limit, topography, and vehicle population. For performing a successful RDE trial one of the most critical part is selection of a route on which all RDE boundary conditions can be met. This technical paper summarizes the outcome of RDE experiments carried out on Light Duty Vehicles (LDV) in the city of Pune, Mumbai, and Bangalore. The collected data was post processed using CO2 based Moving Average Window (MAW) method.
Technical Paper

Regulatory Trends for Enhancement of Road Safety

2024-01-16
2024-26-0165
India is one of the largest markets for the automobile sector and considering the trends of road fatalities and injuries related to road accidents, it is pertinent to continuously review the safety regulations and introduce standards which promise enhanced safety. With this objective, various Advanced Driver Assistance Systems (ADAS) regulations are proposed to be introduced in the Indian market. ADAS such as, Anti-lock Braking Systems, Advanced Emergency Braking systems, Lane Departure Warning Systems, Auto Lane Correction Systems, Driver Drowsiness Monitoring Systems, etc., assist the driver during driving. They tend to reduce road accidents and related fatalities by their advanced and artificial intelligent fed programs. This paper will share an insight on the past, recent trends and the upcoming developments in the regulation domain with respect to safety.
Technical Paper

Generation of Tire Digital Twin for Virtual MBD Simulation of Vehicles for Durability, NVH and Handling Evaluation

2024-01-16
2024-26-0301
With the recent development in virtual modelling and vehicle simulation technology, many OEM’s worldwide are using digital road profiles in virtual environment for vehicle durability load prediction and virtual design evaluation. For precise simulation results, it is important to have the tire digital twin which is the realistic representation of tire in the virtual environment. The study comprises of discussion about different types of tire models such as empirical, solid model, rigid ring model and flexural ring models such as Pacejka, MF Swift, CD tire, F tire etc. and also the complexity involved in development of these tire models. Generation of virtual tire model requires highly sophisticated test rigs as well as vehicle level testing with Wheel Force transducers and other vehicle dynamics sensors. The large number of data points generated with testing are converted in standard TYDEX format to be further processed in various software tool for virtual model generation.
X