Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Journal Article

Conceptual Modeling of Complex Systems via Object Process Methodology

2009-04-20
2009-01-0524
Knowledge mapping is a first and mandatory step in creation of system architecture. This paper considers the conceptual modeling of automotive systems, and discusses the creation of a knowledge-based model with respect to the Object Process Methodology an approach used in designing intelligent systems by depicting them using object models and process models. With this knowledge, systems engineer should consider what a product is comprised of (its structure), how it operates (its dynamics), and how it interacts with the environment. As systems have become more complex, a prevalent problem in systems development has been the number of accruing errors. A clearly defined and consistent mapping of knowledge regarding structure, operation and interaction is necessary to construct an effective and useful system. An interactive, iterative and consistent method is needed to cope with this complex and circular problem.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Axiomatic Design of Automobile Suspension and Steering Systems: Proposal for a Novel Six-Bar Suspension

2004-03-08
2004-01-0811
The existing vehicle designs exhibit a high level of coupling. For instance the coupling in the suspension and steering systems manifests itself through the change in wheel alignment parameters (WAP) due to suspension travel. This change in the WAP causes directional instability and tire-wear. The approach of the industry to solve this problem has been twofold. The first approach has been optimization of suspension link lengths to reduce the change in WAP to zero. Since this is not possible with the existing architecture, the solution used is the optimization of the spring stiffness K to get a compromise solution for comfort (which requires significant suspension travel and hence a soft spring) and directional stability (which demands least possible change in wheel alignment parameters and hence a stiff spring).
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

Assessing the Loss Mechanisms Associated with Engine Downsizing, Boosting and Compression Ratio Change

2013-04-08
2013-01-0929
The loss mechanisms associated with engine downsizing, boosting and compression ratio change are assessed. Of interest are the extents of friction loss, pumping loss, and crevice loss. The latter does not scale proportionally with engine size. These losses are deconstructed via a cycle simulation model which encompasses a friction model and a crevice loss model for engine displacement of 300 to 500 cc per cylinder. Boost pressure is adjusted to yield constant torque. The compression ratio is varied from 8 to 20. Under part load, moderate speed condition (1600 rpm; 13.4 Nm/cylinder brake torque), the pumping work reduces significantly with downsizing while the work loss associated with the crevice volume increases. At full load (1600 rpm; 43.6 Nm/cylinder brake torque), the pumping work is less significant. The crevice loss (normalized to the fuel energy) is essentially the same as in the part load case. The sensitivities of the respective loss terms to downsizing are reported.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

APEX: Autonomous Vehicle Plan Verification and Execution

2016-04-05
2016-01-0019
Autonomous vehicles (AVs) have already driven millions of miles on public roads, but even the simplest scenarios have not been certified for safety. Current methodologies for the verification of AV’s decision and control systems attempt to divorce the lower level, short-term trajectory planning and trajectory tracking functions from the behavioral rules-based framework that governs mid-term actions. Such analysis is typically predicated on the discretization of the state space and has several limitations. First, it requires that a conservative buffer be added around obstacles such that many feasible plans are classified as unsafe. Second, the discretized controllers modeled in this analysis require several refinement steps before being implementable on an actual AV, and typically do not allow the specification of comfort-related properties on the trajectories. Consumer-ready AVs use motion planning algorithms that generate smooth trajectories.
Technical Paper

What Is a Car? Beyond Electronics

2000-11-01
2000-01-C029
A car today presents itself under many guises: as an "office on wheels,'' a "family space,'' a "toy,'' a "sports car,'' a go-anywhere vehicle, or some hybrid combination. What it means to "drive'' consequently is also changing to include more and more secondary activities over and above the primary activity of "vehicle control.'' As the car continues to evolve, electronics plays a large role, particularly in the development of secondary activities such as entertainment and communications, and as mechanical functions are gradually replaced by electronics. Nevertheless, despite the obvious extension of the functionality of the vehicle, and its continuing improvements, there is a growing concern today that the passenger vehicle may be losing emotional resonance with the customer. The fear is that it might simply become a commodified "wheeled conveyance'' or even an "appliance,'' despite all efforts to increase its functionality and usefulness.
X