Refine Your Search

Topic

Search Results

Journal Article

Body Join Drilling for One-Up-Assembly

2013-09-17
2013-01-2296
Over 1,200 large diameter holes must be drilled into the side-of-body join on a Boeing commercial aircraft's fuselage. The material stack-ups are multiple layers of primarily titanium and CFRP. Due to assembly constraints, the holes must be drilled for one-up-assembly (no disassembly for deburr). In order to improve productivity, reduce manual drilling processes and improve first-time hole quality, Boeing set out to automate the drilling process in their Side-of-Body join cell. Implementing an automated solution into existing assembly lines was complicated by the location of the target area, which is over 15 feet (4 meters) above the factory floor. The Side-of-Body Drilling machines (Figure 1) are capable of locating, drilling, measuring and fastening holes with less than 14 seconds devoted to non-drilling operations. Drilling capabilities provided for holes up to ¾″ in diameter through stacks over 4.5″ thick in a titanium/CFRP environment.
Journal Article

Augmented Reality and Other Visualization Technologies for Manufacturing in Boeing

2011-10-18
2011-01-2656
The Efficient Assembly, Integration & Test (EAIT) team at Boeing Research & Technology, Boeing's central technology organization, is working on multiple implementations of Augmented Reality to aid assembly at the satellite production facility in El Segundo, CA. This presentation will discuss our work to bring an Augmented Reality tool to the shop floor, integrating product design and manufacturing techniques into a synergistic backbone and how this approach can support the delivery of engineering design intent on the shop floor. The team is developing a system to bring designer's 3D CAD models to the technicians on the shop floor, and spatially register them to live camera views of production hardware. We will discuss our work in evaluating multiple motion captures systems, how we integrated a Vicon system with Augmented Reality software, and our development of a user interface allowing technicians to manipulate the graphical display.
Journal Article

Technical Improvements to the ASAT2 Boeing 777 Spar Assembly Cell

2011-10-18
2011-01-2707
Electroimpact and Boeing are improving the efficiency and reliability of the Boeing 777 spar assembly process. In 1992, the Boeing 777 spar shop installed Giddings and Lewis spar machines with Electroimpact Inc. EMR(1) (Electromagnetic Riveting) technology. In 2011, Electroimpact Inc. began replacing the original spar machines with next generation assembly machines. The new carriages incorporate a number of technical improvements and advancements over the current system. These technical advancements have facilitated a 50% increase in average cycle rate, as well as improvements to overall process efficiency, reliability and maintainability. Boeing and Electroimpact have focused on several key technology areas as opportunities for significant technical improvements.
Technical Paper

Process Development for Use of AERAC

1991-11-01
912650
Two Automated Electromagnetic Riveting Assembly Cells (AERAC) were manufactured for Textron Aerostructures by Electroimpact, Inc. The AERAC installs the final rivets in the A330/A340 upper wing panel in the floor assembly jig. At Textron for each wing the corresponding floor assembly jigs for each wing are lined up end to end. An operating procedure in which the formboards are removed in bays allows efficient operation of an in the jig riveter such as the AERAC. Specialized machine codes developed for the AERAC allows quick fully programmed stringer to stringer jumps of the stringer side offset tooling. The AERAC is programmed entirely from a CATIA drawing of the part. Of the 5 axes of rivet data available only two are retained for use by the AERAC.
Technical Paper

Assembly Fixture for 787 Section 11, Heavy Composite Assembly

2007-09-17
2007-01-3869
The 787 Section 11 Assembly Cell is a combination fixed post and moving frame holding and indexing system, designed to determinately build the 787 Section 11 Wing box. The retractable overhead frame allows maximum clearance for safer and faster loading and unloading of component parts, as well as completed wingbody sections. Additionally, each index is also retractable allowing maximum fastener access inside the jig.
Technical Paper

Automated Riveting Cell for A320 Wing Panels with Improved Throughput and Reliability (SA2)

2007-09-17
2007-01-3915
A new Low-Voltage Electromagnetic Riveting (LVER) machine has entered service at the Airbus UK wing factory in Broughton, Wales, in an assembly workcell for A320 family wing panels. The machine is based on existing Electroimpact technology but incorporates numerous design modifications to process tools, fastener feed hardware, machine structure and the control system. In the first months of production these modifications have demonstrated clear improvements in fastener installation cycle times and machine reliability.
Technical Paper

Robotic Drilling System for 737 Aileron

2007-09-17
2007-01-3821
Boeing's wholly owned subsidiary in Australia, Hawker de Havilland produces all ailerons for the Boeing 737 family of aircraft. Increasing production rates required to meet market demand drove the requirements for a new updated approach to assembly of these parts. Using lean principals, a pulsed flow line approach was developed. A component of this new line is the integration of a flexible robotic drilling/trimming system. The new robotic system is required to meet aggressive tack time targets with high levels of reliability. The selected system was built on a Kuka KR360-2 conventional articulated arm robot. A significant challenge of this project was the requirement for the process head to work efficiently on an aileron in an existing jig. As a result a new side-mounted drill and trim end effector was developed. Automated tool changers for both cutters and pressure foot assemblies eliminated the requirement for in- process manual intervention.
Technical Paper

Wing Assembly System for British Aerospace Airbus for the A320

1998-09-15
982151
British Aerospace needed an automated wing riveting system for fastening the A320 wing sections. The E4000 Wing Riveting System was designed and installed at their Airbus factory in Chester, UK and is now in production. It uses a five axis solid yoke with workheads on each end of the yoke. It accurately installs both rivets and lockbolts over the entire wing panel, including offset areas.
Technical Paper

Drilling Mixed Stack Materials for the BOEING 787

2010-09-28
2010-01-1867
The new combinations such as composites and titanium that are being used on today's new airplanes are proving to be very challenging when drilling holes during manufacturing and assembly operations. Gone are the days of hand drilling with high speed steel drills through soft aluminum structure, after which aluminum rivets would be swaged into those holes with very generous tolerances. The drilling processes today need to use cutter materials hard enough and tough enough to cut through hard metals such as titanium, yet be sharp enough to resistant abrasion and maintain size when drilling through composites. There is a constant search for better cutters and drills that can drill a greater number of holes. The cost of materials used in today's aircraft is much higher. The cutting tools are more expensive and the hole tolerances are much tighter.
Technical Paper

Method of Accurate Countersinking and Rivet Shaving

2001-09-10
2001-01-2569
Wing skin riveting and bolting requires the surface to be flush to +/–.025mm(.001″) to produce an acceptable finish. Using the method described in this paper, automated wing riveting technology and panel assembly techniques can achieve better shave height and countersink accuracies than have previously been possible in production.
Technical Paper

Drill and Drive End Effector

2001-09-10
2001-01-2576
Electroimpact developed an end effector for Airbus UK, Ltd. for use on a Kuka KR350 robot provided by Airbus UK. The end effector is referred to as the DDEE (Drill and Drive End Effector), and incorporates four main functions. The end effector pushes up on a wing panel with programmable pressure, drills a hole with a servo-servo drill, inspects the hole with a servo ball-type hole gauge and then drives a pin-tail style lockbolt into the hole. The end effector is being used as part of a development and feasibility study for incorporating automation into the wing panel manufacture process.
Technical Paper

Offset Fastening Flex Track

2012-09-10
2012-01-1850
Flex Track Drilling systems have been successfully implemented into several production environments and scenarios over the past couple of years. They continue to see a high demand where traditional machine tool implementations might be prohibitive due to cost or existing jig structures. This demand for innovation has led to a unique Flex Track design termed an Offset Flex Track that not only works between the vacuum rails, but can work beyond the envelope of the rails. This allows the machine to be used in situations such as the leading edge of wings where the vacuum rails cannot straddle the work envelope. The next evolution of this Offset machine is the introduction of final fastener installation onto the head using an onboard rivet gun. In addition, the camera used to locate datum points on the fuselage is now integrated into the nose piece, eliminating the need for a tool change to a spindle mounted camera.
Technical Paper

Automated Floor Drilling Equipment for the Next Generation 737

1997-09-30
972809
Boeing needed a process to replace hand drilling for floor panel holes and galley and lavatory mounting locator holes in the floor grid of the completed 737 fuselage. Electroimpact developed a process, and the 737 AFDE machine, that is a substantial improvement over existing technology. It provides full CNC control, quick reconfiguration of hole patterns, fast drilling of up to 3000 holes in one 8-hour shift, drills both titanium and aluminum and works inside the fuselage.
Technical Paper

Simply Supported Retractable Top Beam for Wing Major Assembly Jig

2006-09-12
2006-01-3127
A large free-standing structure is constructed to positively position the spar and related components in the major assembly jig of the wing for a military transport aircraft. The beam of this structure is mounted on mechanisms enabling the lateral retraction of the beam and tooling to provide full part loading access and extraction of a completed wing. The free-standing nature of this design also allows full integration of an automated drilling machine into the jig.
Technical Paper

Dual Electric Spindle Retrofit for Wing Riveters

2006-09-12
2006-01-3176
The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
Technical Paper

Low Voltage Electromagnetic Lockbolt Installation

1992-10-01
922406
British Aerospace, Airbus Ltd., Chester, UK manufactures the main wing box assembly for all current Airbus programs. Titanium interference fasteners are used in large numbers throughout these aircraft structures. On the lower wing skin of the A320 alone there are approximately 11,000 of this fastener type. Currently, the majority of these fasteners are manually installed using pneumatic or hydraulic tooling. British Aerospace engineers recognized the significant potential which automation offers to reduce these current labor intensive installation methods. Electroimpact proposed extending Low Voltage Electromagnetic Riveter (LVER) technology to the automatic installation of these interference fasteners as well as rivets. Close liaison between Airbus and Electroimpact engineers resulted in the development of an automated LVER based lockbolt installation system, which is currently undergoing evaluation.
Technical Paper

Automatic Stringer Drilling System

1994-10-01
941832
Northrop Corporation manufactures body panels for the Boeing 747 aircraft. There are 1259 different stringer configurations used on the three 747 models with an average of 839 stringers per ship set. Until recently, all drain holes and skin coordination pilot holes were drilled manually using plastic application template tools (PATTS). Inventory costs were high and manual drilling errors led to excessive scrap and rework rates. Northrop engineers recognized that automating the stringer drilling process would produce higher quality parts at a lower cost. Northrop worked with Electroimpact, Inc. to develop the Automatic Stringer Drilling System (ASDS). The ASDS automatically clamps and drills all straight and contoured stringers used on the 747. Stringers are mounted on a rotating platform that provides +/- 90° of motion. Two servo-servo drills are mounted on a cantilevered arm with 25 feet of X-axis travel.
Technical Paper

A Flexible Development System for Automated Aircraft Assembly

1996-10-01
961878
McDonnell Douglas Aircraft in St. Louis, MO manufacturers various transport and fighter military aircraft such as the C-17 and the F/A-18. With shrinking military budgets and increased competition, market forces demand high quality parts at lower cost and shorter lead times. Currently, a large number of different fastener types which include both solid rivets and interference bolts are used to fasten these assemblies. The majority of these fasteners are installed by hand or by using manually operated C-Frame riveters. MDA engineers recognized that in order to reach their goals they would be required to rethink all phases of the assembly system, which includes fastener selection, part fixturing and fastener installation methods. Phase 1 of this program is to identify and to develop fastener installation processes which will provide the required flexibility. The EMR fastening process provides this flexibility.
Technical Paper

A Selected Operational History of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2004-07-19
2004-01-2470
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001.
Technical Paper

HAWDE Five Axis Wing Surface Drilling Machine

2004-09-21
2004-01-2806
The Horizontal Automated Wing Drilling Equipment (HAWDE) machine is an enabling technology for automated drilling of large aircraft parts. HAWDE is a five axis drilling machine that operates over the upper and lower surfaces of eight wings, each more than 40 meters long and four stories tall. The machine accesses the entire A380 wing using a combination of elevators and a machine transporter that carries the machine from surface to surface. HAWDE drills holes in spars, butt splices, and rib feet in the wing box final assembly jigs for A380.
X