Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Journal Article

Preforming of a Fuselage C-Shaped Frame Manufactured by Resin Transfer Molding

2013-09-17
2013-01-2214
The need for efficient manufacturing approaches has emerged with the increasing usage of composites for structural components in commercial aviation. Resin Transfer Molding (RTM), a process where a fiber preform is injected with resin into a closed tool, can achieve high fiber content required for structural components as well as improved dimensional accuracy since all surfaces are controlled by a tool surface. Moreover, RTM is well suited for parts that can be standardized throughout the aircraft, such as a fuselage frames and stringers. The objective of this investigation is to develop a preforming approach for a C-Shaped Fuselage frame. Two approaches are proposed: tri-axial braiding and hand lay-up of Non-Crimp Fabrics. The fiber architecture of the basic materials as well as the complete preforms is explained. The necessary preforming operations are detailed. The quality control measurement of fiber orientation and thickness are presented.
Journal Article

Control Charts for Short Production Runs in Aerospace Manufacturing

2013-09-17
2013-01-2248
Statistical process control (SPC) has been extensively used in many different industries including automotive, electronics, and aerospace, among others. SPC tools such as control charts, process capability analysis, sampling inspection, etc., have definitive and powerful impact on quality control and improvement for mass production and similar production systems. In aerospace manufacturing, however, applications of SPC tools are more challenging, especially when these tools are implemented in processes producing products of large sizes with slower production rates. For instance, following a widely accepted rule-of-thumb, about 100 units of products are required in the first phase of implementing a Shewhart type control chart. Once established, it then can be used for process control in the second phase for actual production process monitoring and control.
Journal Article

Defining Environmental Indicators at Detail Design Stage as Part of an Ecodesign Strategy

2013-09-17
2013-01-2276
Implementing Design for Environment (DfE) into the design process requires a strategic integration. Furthermore, as DfE is continuously evolving, flexible processes need to be implemented. This article focuses on the integration of DfE into an optimization framework with the objective of influencing next-generation aircraft. For this purpose, DfE and Structures groups are developing together a set of new environmental indicators covering all life cycle stages of the product by coupling a list of yes/no questions with an environmental matrix. The following indicators are calculated: Regulation risk, Impact of manufacturing the part, CO2 emissions and Recyclability potential. These indicators will be used as constraints in the multi-disciplinary design optimization (MDO) framework, meaning that the structure will be designed while complying with environmental targets and anticipating future regulation changes.
Journal Article

Process Change: Redesign of Composite Parts for Structural Integrity

2013-09-17
2013-01-2328
The objective of this document is to present the methodology used to verify the structural integrity of a redesigned composite part. While shifting the manufacturing process of a composite part from pre-impregnated to a liquid resin injection process, the Composites Development team at Bombardier Aerospace had to redesign the component to a new set of design allowables. The Integrated Product Development Team (IPDT) was able to quickly provide a turnkey solution that assessed three aspects of airframe engineering: Design, Materials & Processes (M&P) and Stress. The focus of this paper will be the stress substantiation process led by the Stress Engineers. It will also bring up the synergies with M&P that are unique to the IPDT approach. The stress substantiation process required three distinct checks be confirmed.
Journal Article

Part Redesign: From Fastened Assembly to Co-Cured Concept

2013-09-17
2013-01-2329
During the course of an aircraft program, cost and weight savings are two major areas demanding constant improvements. An Integrated Product Development Team (IPDT) was set to the task of proposing potential improvements to an aircraft under development. From a list of potential parts, the IPDT selected one which was considered as the most suitable to leverage a co-curing process. In the aircraft manufacturing industry, any major modification to a part design should follow the program's means of compliance to certification. Furthermore, to demonstrate the new design's safety, sizing methodology and all supplementary testing must fit in the certification strategy. The IPDT approach was used to ensure the maturity of both process and part. Indeed, a mature turnkey solution can be implemented quickly on the shop floor. This IPDT approach is detailed in another SAE 2013 technical paper entitled: “A Novel Approach for Technology Development: A Success Story” [3].
Journal Article

Reliability Improvement of Lithium Cells Using Laser Welding Process with Design of Experiments

2013-09-17
2013-01-2201
Manufacturing operations introduce unreliability into hardware that is not ordinarily accounted for by reliability design engineering efforts. Inspections and test procedures normally interwoven into fabrication processes are imperfect, and allow defects to escape which later result in field failures. Therefore, if the reliability that is designed and developed into an equipment/system is to be achieved, efforts must be applied during production to insure that reliability is built into the hardware. There are various ways to improve the reliability of a product. These include: Simplification Stress reduction/strength enhancement Design Improvement Using higher quality components Environmental Stress Screening before shipment Process Improvements, etc. This paper concentrates on ‘Manufacturing Process Improvement’ effort through the use of design of experiments, (DOE). Hence, improved levels of reliability can be achieved.
Journal Article

Processing CSeries Aircraft Panels

2013-09-17
2013-01-2149
Bombardier faced new manufacturing process challenges drilling and fastening CSeries* aircraft panels with multi-material stacks of composite (CFRP), titanium and aluminum in which Gemcor responded with a unique, flexible CNC Drivmatic® automatic fastening system, now in production at Bombardier. This joint technical paper is presented by Bombardier, expounding on manufacturing process challenges with the C Series aircraft design requirements and Gemcor presenting a unique solution to automatically fasten CFRP aft fuselage panels and aluminum lithium (Al Li) cockpit panels with the same CNC Drivmatic® system. After installation and preliminary acceptance at Bombardier, the CNC system was further enhanced to automatically fasten the carbon fiber pressure bulkhead dome assembly.
Technical Paper

An Anecdote - Order of Magnitude Cost and Time Reduction in Delivering an Aircraft Manufacturing Solution

2013-09-17
2013-01-2335
From purchase order to production womb-to-tomb in 5 months to the day, Bombardier's Fuselage Assembly line was upgraded and made into a fuselage automated assembly pulse line. This was accomplished with a factory move of the assembly line while maintaining production of this legacy line without missing one aircraft. Early in 2012, a bold decision was made to change the plan from a manual process to an automated process and implemented on schedule. This was applying automation to a legacy aircraft assembly line. It worked. Both technology and recurring cost savings will be addressed in this paper.
Technical Paper

Development of Low Cost Fuselage Frames by Resin Transfer Molding

2013-09-17
2013-01-2325
This paper presents work on the development of a low cost fuselage C-frame for aircraft primary structure using a Light Resin Transfer Molding (RTM) process. Compared to labor intensive hand layup prepreg technologies, Light RTM offers some substantial advantages by reducing infrastructure requirements such as hydraulic presses or autoclaves. Compared to Prepreg, Light RTM tooling creates two finished surfaces, which is an advantage during installation due to improved dimensional accuracy. The focus of this work was to develop means of achieving high fiber volume fraction structural frames using low cost tooling and a low volume manufacturing strategy. In this case a three piece Light RTM mold was developed using an internal mandrel. To achieve the strength requirements, a combination of crimped and non-crimped fabrics were selected for the reinforcing preform.
Technical Paper

A Robust Iterative Displacement Inspection Algorithm for Quality Control of Aerospace Non-Rigid Parts without Conformation Jig

2013-09-17
2013-01-2173
Nowadays, optimization of manufacturing and assembly operations requires taking into account the inherent processes variations. Geometric and dimensional metrology of mechanical parts is very crucial for the aerospace industry and contributes greatly to its. In a free-state condition, non-rigid parts (or compliant parts) may have a significant different shape than their nominal geometry (CAD model) due to gravity loads and residual stress. Typically, the quality control of such parts requires a special approach where expensive and specialized fixtures are needed to constrain dedicated and follow the component during the inspection. Inspecting these parts without jig will have significant economic impacts for aerospace industries, reducing delays and the cost of product quality inspection. The Iterative Displacement Inspection (IDI) algorithm has been developed to deal with this problem.
Technical Paper

Porosity Assessment in Large Composite Components: Realization and Challenges

2013-09-17
2013-01-2213
Non Destructive Inspection (NDI) of large Out of Autoclave Cure primary monolithic and sandwich Composite structures is challenging due to high requirement for flaw detection and characterization among porosity, delamination, disbond, foreign material, crushed core, dry fiber. Large scale NDI inspection with semi-automated and automated system is presented for flaw detection/characterization and porosity assessment methodology is described with results for high porosity level assessment in monolithic and sandwich structures.
Technical Paper

Aircraft Noise Source Identification Using a Microphone Array: Montreal-Trudeau Airport Test Campaign

2013-09-17
2013-01-2129
This paper summarizes the techniques used during a microphone array test campaign performed at Pierre-Elliott-Trudeau Airport in Montréal, Québec (Canada) during the summer of 2012. Emphasis is put on the actual measurement campaign as only a limited amount of analysis has been performed at this stage. An aircraft position tracking tool is presented along with the beamforming algorithms that were used. Over 500 aircraft were recorded during this test. A comparison of known tonal sources associated to a specific aircraft type is made between different airlines in order to evaluate the repeatability of the method.
Technical Paper

Optimal Traceability for IMA System-of-Systems

2012-10-22
2012-01-2141
Traceability has always been considered a useful but costly activity and different methods have been applied to reduce this cost. The current paper constitutes an attempt to improve these methods by introducing an optimal traceability process to be used in the context of RTCA DO-297 “Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations”. The paper starts by comparing the definitions of traceability from DO-297 and the related development guidelines (i.e. ARP4754A, DO-254 and DO-178B). The paper continues by classifying the traceability methods recommended by the guidelines and introducing a performance criterion for optimal traceability based on category theory. This criterion addresses the possibility of information loss present in the current traceability methods. The paper proposes an optimal traceability process (i.e. that guarantees that information is not lost) and exemplifies it. The paper ends by recommending further enhancements.
Technical Paper

Flying Qualities Evaluation of a Commuter Aircraft with an Ice Contaminated Tailplane

2000-05-09
2000-01-1676
During the NASA/FAA Tailplane Icing Program, pilot evaluations of aircraft flying qualities were conducted with various ice shapes attached to the horizontal tailplane of the NASA Twin Otter Icing Research Aircraft. Initially, only NASA pilots conducted these evaluations, assessing the differences in longitudinal flight characteristics between the baseline or clean aircraft, and the aircraft configured with an Ice Contaminated Tailplane (ICT). Longitudinal tests included Constant Airspeed Flap Transitions, Constant Airspeed Thrust Transitions, zero-G Pushovers, Repeat Elevator Doublets, and, Simulated Approach and Go-Around tasks. Later in the program, guest pilots from government and industry were invited to fly the NASAT win Otter configured with a single full-span artificial ice shape attached to the leading edge of the horizontal tailplane.
Technical Paper

The Bombardier Flight Test Center - Meeting the Challenge

2000-10-10
2000-01-5502
In 1991, shortly after acquiring Learjet, Bombardier consolidated all flight testing of new aircraft at the Wichita, Kansas facility. Since then, nine new aircraft were certified, and the Flight Test Center grew from 20 dedicated flight test personnel, to nearly 500 dedicated flight test personnel. The Canadian based company in conjunction with several international risk sharing partners, has created a highly dynamic flight test environment, tasking the Flight Test Center with the challenge of bringing a new product to market each year. This rapid growth was centered on supporting three aircraft product lines; Learjet, Canadair, and DeHavilland. New hangars, telemetry, and ground support facilities were built to accommodate the increased flight test demands. The Bombardier Flight Test Center, otherwise known as BFTC, conducts flight test operations on a seven day per week schedule, and in 1999, flew over 5000 flight test hours in development and certification testing.
Technical Paper

Tailplane with Positive Camber for Reduced Elevator Hinge Moment

2015-09-15
2015-01-2566
The Learjet 85 is a business jet with an unpowered manual elevator control and is designed for a maximum dive Mach number of 0.89. During the early design, it was found that the stick force required for a 1.5g pull-up from a dive would exceed the limit set by FAA regulations. A design improvement of the tailplane was initiated, using 2D and 3D Navier-Stokes CFD codes. It was discovered that a small amount of positive camber could reduce the elevator hinge moment for the same tail download at high Mach numbers. This was the result of the stabilizer forebody carrying more of the tail download and the elevator carrying less. Consequently, the elevator hinge-moment during recovery from a high-speed dive was lower than for the original tail. Horizontal tails are conventionally designed with zero or negative camber since a positive camber can have adverse effects on tail stall and drag.
Technical Paper

Equivalent Sand Grain Roughness Correlation for Aircraft Ice Shape Predictions

2019-06-10
2019-01-1978
Many uncertainties in an in-flight ice shape prediction are related to convection heat transfer coefficient, which in turn depends on the flow, turbulence and laminar/turbulent transition models. The height of ice roughness element used to calculate the Equivalent Sand Grain Roughness height (ESGR) is a very important input of the turbulence model as it strongly influences the shape of the accreted ice. Unfortunately, for in-flight icing, the ESGR is unknown and generally calculated using semi-empirical models or empirical correlations based on a particular ice shape prediction code. Each ice shape prediction code is unique due to the models and correlations used and the numerical implementation. Ice roughness correlations do not have the same effect in each ice shape prediction code. A new approach to calculate the ESGR correlation taking into consideration the particularities of the ice shape prediction code is developed, calibrated and validated.
X