Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Comfort and Usability of the Seat Belts

2001-03-05
2001-01-0051
Seat belts are the primary occupant-protection devices for vehicle crashes. Field statistics show that proper usage of seat belts substantially contributes to decreases in the fatality rate and injury level. To collect first-hand information regarding seat belt comfort and usability, a questionnaire survey was conducted. The most significant problems were found as belt trapping in the door, awkward negotiating with clothes, belt twisting, belt locking up, and difficulty to locate the buckle. The survey results indicated that drivers who are over 40 years old have more complaints than younger drivers. When the driver's age increases to 55 and above, belt pulling force and inappropriate and loose fitting of the belt on the body become major issues. Female drivers have more complaints than male drivers. Short statured drivers need both hands to pull and guide the retracting of the belt.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate. The US data was obtained from the weighted National Automotive Sampling System (NASS-CDS), calendar years 1992 to 1996. The UK pre-roll data was obtained from the national STATS 19 database for 1996, while the injury information was collected from the Co-operative Crash Injury Study (CCIS) database. In the US and UK databases, rollovers accounted for about 10% of all crashes with known crash directions. In the US and UK databases, most rollovers occurred when the vehicle was either going straight ahead or turning. The propensity for a rollover was more than 3 times higher when going around a bend than a non-rollover. In the UK, 74% of rollovers occurred on clear days with no high winds and 14% on rainy days with no high winds. In the US, 83% of rollovers took place in non-adverse weather conditions and 10% with rain.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Development of an Automotive Rollover Sensor

2000-05-01
2000-01-1651
It is estimated that in the United States, nearly one quarter of all fatal automobile accidents involve a vehicle rollover. [1] In order to reduce fatalities and serious injuries, it is desirable to develop a sensing system that can detect an imminent rollover condition with sufficient time to activate occupant safety protection devices. The goals of a Rollover Sensing Module (RSM) are; 1 To accurately estimate vehicle roll and pitch angles 2 To reliably predict in a timely manner an imminent rollover 3 To eliminate false activation of safety devices 4 To function properly during airborne conditions 5 To be as autonomous as possible, not requiring information from other vehicle subsystems.
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

Suppression Technologies for Advanced Air Bags

2000-11-01
2000-01-C037
In May 2000 the National Highway Traffic Safety Administration (NHTSA) issued the final rule for the Advanced Air Bag regulations effective MY 2004 for vehicles to be sold in the United States. These regulations are in response to the air bag-induced injuries seen in the field, especially to children and short women. Advanced air bags require a vehicle manufacturer to design air bags for a broad array of occupants: 12-month-old, 3-year-old and 6-year-old children, and 5th percentile adult females, as well as 50th percentile adult males with new and more stringent injury criteria. Requirements for minimizing air bag risks include automatically turning off the air bag in the presence of young children or deploying the air bag in a manner much less likely to cause serious or fatal injury to out-of-position occupants. Technologies that disable the air bag in the presence of young children or adults in out-of-position are termed as "suppression technologies.'
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
The industry strategy for automotive safety systems has been evolving over the last 20 years. Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. Systems that are on the threshold of being deployed or under intense development include collision detection / warning / intervention systems, lane departure warning, drowsy driver detection, and advanced safety interiors.
Technical Paper

Driver Injuries in US Single-Event Rollovers

2000-03-06
2000-01-0633
The purpose of this paper is to investigate occupant injuries which may be sustained during a single-event crash with known roll mechanism. The data was obtained from the weighted National Automotive Sampling System/ Crashworthiness Data System (NASS-CDS) for calendar years 1992 to 1996. The effect of number of rollover turns, roll direction, ejection and belt usage on driver injury responses was analyzed in single-event trip-overs. Trip-overs were chosen for the analysis because they account for over 50% of rollover crashes. The number of rollovers was divided in 3 categories: ¼ to ½ turn, ¾ to 1 turn and above 1 turn. Roll direction was either roll-left or a rollright along the longitudinal axis of the vehicle. Roll-left represents a roll with the driver side leading, while a roll right is with the right front passenger side leading. In the database used in this study, there were three times more belted drivers than unbelted.
Technical Paper

US and UK Belted Driver Injuries with and without Airbag Deployments - A Field Data Analysis

1999-03-01
1999-01-0633
This study compares the effect of US and European airbag deployments on injury outcomes for belted drivers in frontal crashes. Driver weight, height and seat track position was also examined in relation to those outcomes. This information may help to prioritize and guide the logic for “Smart” airbags. For the study, only airbag-equipped cars were considered. Two accident databases were used: 1) the weighted and unweighted National Accident Sampling System (NASS-CDS) from the US, calendar years 1995 to 1996, and 2) the unweighted Co-operative Crash Injury Study (CCIS) from the UK, calendar years 1992 to 1998. The parameters investigated were Injury Severity Score (ISS), Equivalent Test Speed (ETS), occupant weight, occupant height and seat location. For US drivers, the injury rate and occurrence were calculated using weighted data, while for UK drivers, the rate and occurrence were obtained using unweighted data.
Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
X