Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Review of Diesel Emissions and Control

2010-04-12
2010-01-0301
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for PN (particle number) regulations that require diesel particulate filters (DPFs) for Euro VI in 2013-14, and SULEV (super ultra low emission vehicle) fleet average light-duty (LD) emissions likely to be proposed in California for ~2017. CO₂ regulations will also impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Heavy-duty (HD) research engines show 90% lower NOx at the same PM or fuel consumption levels as a reference 2007 production engine. Work is starting on HD gasoline engines with promising results. In light duty (LD), engine downsizing is progressing and deNOx is emerging as a fuel savings strategy.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Journal Article

Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life

2010-04-12
2010-01-1213
Ash accumulation in diesel particulate filters, mostly from essential lubricant additives, decreases the filter's soot storage capacity, adversely affects fuel economy, and negatively impacts the filter's service life. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. To address these issues, results of detailed measurements with specially formulated lubricants, correlating ash properties to individual lubricant additives and their effects on DPF pressure drop, are presented. Investigations using the specially-formulated lubricants showed ash consisting primarily of calcium sulfates to exhibit significantly increased flow resistance as opposed to ash primarily composed of zinc phosphates. Furthermore, ash accumulated along the filer walls was found to be packed approximately 25% denser than ash accumulated in the channel end-plugs.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Technical Paper

A Study of Emission Durability and Ash Accumulation of “Advanced Three-way Catalyst Integrated on Gasoline Particulate Filter” for BS6 (Stage2) Applications

2021-09-22
2021-26-0182
India BS6 Stage2 (2023) regulations demand all gasoline direct injection (GDI) vehicles to meet particulate number emissions (PN) below 6x10+11# per km. Gasoline particulate filters (GPF) are a proven technology and enable high PN filtration efficiencies throughout the entire vehicle lifetime. One challenge for GPF applications could be the changing emission performance characteristics as a function of mileage due to collected ash and/or soot deposits with implications on back pressure losses. The main objective of this technical contribution is to study the above-mentioned challenges while applying Indian driving conditions and typical Indian climate and other ambient conditions. The substrate technology selected for this study is a high porosity GPF designed to enable the integration of a three-way functionality into the GPF, commonly described as catalyzed GPF (cGPF).
Journal Article

Review of Vehicular Emissions Trends

2015-04-14
2015-01-0993
This review paper summarizes major developments in vehicular emissions regulations and technologies from 2014. The paper starts with the key regulatory advancements in the field, including newly proposed Non-Road Mobile Machinery regulations for 2019-20 in Europe, and the continuing developments towards real driving emissions (RDE) standards. An expert panel in India proposed a roadmap through 2025 for clean fuels and tailpipe regulations. LD (light duty) and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are demonstrating more than 50% brake thermal efficiency using methods that can reasonably be commercialized. Next, NOx control technologies are summarized, including SCR (selective catalytic reduction), lean NOx traps, and combination systems. Emphasis is on durability and control.
Journal Article

Vehicular Emissions in Review

2016-04-05
2016-01-0919
This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2015. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe is continuing developments towards real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Journal Article

Low Cost LEV-III, Tier-III Emission Solutions with Particulate Control using Advanced Catalysts and Substrates

2016-04-05
2016-01-0925
A production calibrated GTDI 1.6L Ford Fusion was used to demonstrate low HC, CO, NOx, PM (particulate mass), and PN (particulate number) emissions using advanced catalyst technologies with newly developed high porosity substrates and coated GPFs (gasoline particulate filters). The exhaust system consisted of 1.2 liters of TWC (three way catalyst) in the close-coupled position, and 1.6L of coated GPF in the underfloor position. The catalysts were engine-aged on a dynamometer to simulate 150K miles of road aging. Results indicate that ULEV70 emissions can be achieved at ∼$40 of PGM, while also demonstrating PM tailpipe performance far below the proposed California Air Resources Board (CARB) LEV III limit of 1 mg/mi. Along with PM and PN analysis, exhaust system backpressure is also presented with various GPF designs.
Journal Article

Vehicular Emissions in Review

2012-04-16
2012-01-0368
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2011. First, the paper covers the key regulatory developments in the field, including proposed criteria pollutant tightening in California; and in Europe, the newly proposed PN (particle number) regulation for direct injection gasoline engines, test cycle development, and in-use testing discussions. The proposed US LD (light-duty) greenhouse gas (GHG) regulation for 2017-25 is reviewed, as well as the finalized, first-ever, US HD (heavy-duty) GHG rule for 2014-17. The paper then gives a brief, high-level overview of key emissions developments in LD and HD engine technology, covering both gasoline and diesel. Emissions challenges include lean NOx remediation for diesel and lean-burn gasoline to meet both the emerging NOx and GHG regulations.
Technical Paper

The Design of Automotive Catalyst Supports for Improved Pressure Drop and Conversion Efficiency

1991-02-01
910371
The current automotive catalytic converter is highly dependable and provides excellent emissions reduction while at the same time it offers little resistance to the flow of gasses through the exhaust system. As automobile performance requirements increase, and as the allowable tailpipe emissions are tightened, there is a need on the one hand to reduce the back pressure even further, and on the other, to increase the already excellent catalytic performance. This paper will analyze the substrate factors which influence the pressure drop and conversion efficiency of the catalyst system. The converter frontal area has the most significant influence on both pressure drop and conversion efficiency, followed in order by part length, cell density, and wall thickness.
Journal Article

NOx Reduction Using a Dual-Stage Catalyst System with Intercooling in Vehicle Gasoline Engines under Real Driving Conditions

2018-04-03
2018-01-0335
Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is used in diesel-fueled mobile applications where urea is an added reducing agent. We show that the Ultera® dual-stage catalyst, with intercooling aftertreatment system, intrinsically performs the function of the SCR method in nominally stoichiometric gasoline vehicle engines without the need for an added reductant. We present that NOx is reduced during the low-temperature operation of the dual-stage system, benefiting from the typically periodic transient operation (acceleration and decelerations) with the associated swing in the air/fuel ratio (AFR) inherent in mobile applications, as commonly expected and observed in real driving. The primary objective of the dual-stage aftertreatment system is to remove non-methane organic gases (NMOG) and carbon monoxide (CO) slip from the vehicle’s three-way catalyst (TWC) by oxidizing these constituents in the second stage catalyst.
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2018-04-03
2018-01-0329
This review article summarizes major and representative developments in vehicle emissions regulations, engine efficiency, and emission control from 2017. The article starts with the key regulatory developments in the field, including newly proposed European light-duty (LD) CO2 regulations (15 and 30% cuts in 2025 and 2030, respectively, from 2020 levels) and technical improvements of the Euro 6 real driving emissions (RDE) regulations. China finalized their new energy vehicle (NEV) mandates for 2019 and 2020. LD and heavy-duty (HD) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas (GHG) regulations. Several LD gasoline concepts are achieving 10-15% and some up to 35% reductions relative to gasoline direct injection (GDI) engines of today.
Journal Article

Soot and Ash Deposition Characteristics at the Catalyst-Substrate Interface and Intra-Layer Interactions in Aged Diesel Particulate Filters Illustrated using Focused Ion Beam (FIB) Milling

2012-04-16
2012-01-0836
The accumulation of soot and lubrication-derived ash particles in a diesel particulate filter (DPF) increases exhaust flow restriction and negatively impacts engine efficiency. Previous studies have described the macroscopic phenomenon and general effects of soot and ash accumulation on filter pressure drop. In order to enhance the fundamental understanding, this study utilized a novel apparatus that of a dual beam scanning electron microscope (SEM) and focused ion beam (FIB), to investigate microscopic details of soot and ash accumulation in the DPF. Specifically, FIB provides a minimally invasive technique to analyze the interactions between the soot, ash, catalyst/washcoat, and DPF substrate with a high degree of measurement resolution. The FIB utilizes a gallium liquid metal ion source which produces Ga+ ions of sufficient momentum to directionally mill away material from the soot, ash, and substrate layers on a nm-μm scale.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
X