Refine Your Search

Topic

Author

Search Results

Journal Article

Flow-Induced Whistle in the Joint of Thermal Expansion Valve and Suction Tube in Automotive Refrigerant System

2015-06-15
2015-01-2275
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle around 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

1990-02-01
900489
A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

Regimes of Premixed Turbulent Combustion and Misfire Modeling in SI Engines

1998-10-19
982611
A review of flame kernel growth in SI engines and the regimes of premixed turbulent combustion showed that a misfire model based on regimes of premixed turbulent combustion was warranted[1]. The present study will further validate the misfire model and show that it has captured the dominating physics and avoided extremely complex, yet inefficient, models. Results showed that regimes of turbulent combustion could, indeed, be used for a concept-simple model to predict misfire limits in SI engines. Just as importantly, the entire regimes of premixed turbulent combustion in SI engines were also mapped out with the model.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

2009-07-12
2009-01-2535
Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Archetypal Vehicle Dynamics Model for Resistance Rollover Prediction

2010-04-12
2010-01-0715
Nowadays is a common sense the importance of the CAE usage in the modern automotive industry. The ability to predict the design behavior of a project represents a competitive advantage. However, some CAE models have become so complex and detailed that, in some cases, one just can not build up the model without a considerable amount of information. In that case simplified models play an important role in the design phase, especially in pre-program stages. This work intends to build an archetypal vehicle dynamics model able to predict the rollover resistance of a vehicle design. Through the study of a more complex model, carried out in Adams environment, it was possible to identify the key degrees of freedom to be considered in the simplified model along with important elements of the suspension which are also important design factors.
Technical Paper

Exhaust Gas Temperature Determination with HEGO Parameters

2010-04-12
2010-01-1303
Exhaust gas temperature is often measured with a device such as thermocouple or RTD (Resistance Temperature Detector). An alternative method to determine the gas temperature would be to use an existing gas sensor heating mechanism to perform as a temperature sensor. A planar type FLOH (Fast Light Off HEGO-Heated Exhausted Gas Oxygen) sensor under transient vehicle speed/load conditions is suited to this function and was modeled to predict the exhaust gas temperature. The numerical input to the model includes exhaust flow rate, heater voltage, and heater current. Laboratory experiments have been performed to produce an equation relating the resistance of the heater and the temperature of the sensor (heater), which provides a method to indirectly determine HEGO sensor temperature.
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

Cooling Inlet Aerodynamic Performance and System Resistance

2002-03-04
2002-01-0256
This report is a contribution to the understanding of inlet aerodynamics and cooling system resistance. A characterization of the performance capability of a vehicle front-end and underhood, called the ram curve, is introduced. It represents the pressure recovery/loss of the front-end subsystem - the inlet openings, underhood, and underbody. The mathematical representation, derived from several experimental investigations on vehicles and components, has four basic terms: Inlet ram pressure recovery; free-stream energy recovered when the vehicle is moving Basic inlet loss; inlet restriction when the vehicle is stationary Pressure loss of the engine bay Engine bay-exit pressure Not surprisingly, the amount of frontal projection of radiator area through the grille, bumper and front-end structure (called projected inlet area), and flow uniformity play a major role in estimating inlet aerodynamic performance.
Technical Paper

Vehicle Aerodynamic Shape Optimization

2011-04-12
2011-01-0169
Recent advances in morphing, simulation, and optimization technologies have enabled analytically driven aerodynamic shape optimization to become a reality. This paper will discuss the integration of these technologies into a single process which enables the aerodynamicist to optimize vehicle shape as well as gain a much deeper understanding of the design space around a given exterior theme.
Technical Paper

The Long-Term Durability of Thermoplastic Bumpers

1993-03-01
930538
Properties of thermoplastic bumpers made of polycarbonate (PC) and polybutylene terephthalate (PBT) blend were evaluated after several years of service in the field. In this study we measured the Izod impact strength, PC molecular weight, and melt flow rate of bumpers collected from various geographical areas in the U.S. Generally, the system had good impact resistance after more than five years of service in the field, retaining most of the original impact strength. There were small changes in PC average molecular-weights and melt flow rates. The results showed that changes depended on both exposure time and the weather conditions of the environment.
Technical Paper

Wind Noise and Aerodynamic Drag Optimization of Outside Rear View Mirrors

1993-05-01
931292
Automotive outside rear view mirror shape has become an important consideration in achieving wind noise and aerodynamic performance objectives. This paper describes a two step process used to develop a mirror shape which meets both wind noise and aerodynamic objectives. First, basic understanding of door mounted verses sail mounted mirrors and shape parameters was obtained by evaluating selected shapes and studying their physical measurements relative to their measured responses. Relationships between the wind noise and drag responses revealed performance range limitations for sail mounted mirrors. Second, a central composite experimental design was utilized to more closely investigate door mounted mirror shape parameters to determine optimal mirror performance potential. The resulting empirical models developed were used to determine the best overall solution.
Technical Paper

Modeling Diffuser-Monolith Flows and Its Implications to Automotive Catalytic Converter Design

1992-06-01
921093
Most current automotive catalytic converters use diffusers to distribute the flow field inside the monolithic bricks where catalysis takes place. While the characteristics and performance of a simple diffuser flow are well documented, the influence of downstream brick resistance is not clear. In this paper the trade-off between flow-uniformity and pressure drop of an axisymmetric automotive catalytic converters is studied numerically. The monolithic brick resistance is formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. A distribution index was formulated to quantify the degree of non-uniformity in selected test cases. The test matrix covers a range of different diffuser angles and flow resistances (brick types). For simplicity, an axisymmetric geometry is chosen. Flow distribution within the monolith was found to depend strongly on diffuser performance, which is modified by brick resistance.
Technical Paper

A Calibration Study of CFD for Automotive Shapes and CD

1994-03-01
940323
An extensive calibration study has been initiated to assess the predictive ability of CFD (Computational Fluid Dynamics) for the aerodynamic design of automotive shapes. Several codes are being checked against a set of detailed wind tunnel measurements on ten car-like shapes. The objective is to assess the ability of numerical analysis to predict the CD (drag coefficient) influence of the rear end configuration. The study also provides a significant base of information for investigating discrepancies between predicted and measured flow fields and for assessing new numerical techniques. This technical report compares STAR-CD predictions to the wind tunnel measurements. The initial results are quite encouraging. Calculated centerline pressure distributions on the front end, underbody and floor compare well for all ten shapes. Wake flow structures are in reasonable agreement for many of the configurations. Drag, lift, and pitching moment trends follow the experimental measurements.
Technical Paper

Characterization of Intake-Generated Flow Fields in I.C. Engines Using 3-D Particle Tracking Velocimetry (3-D PTV)

1994-03-01
940279
Flow fields generated during the intake stroke of a 4-stroke I.C. engine are studied experimentally using water analog simulation. The fluid is seeded by small flow tracer particles and imaged by two digital cameras at BDC. Using a 3-D Particle Tracking Velocimetry technique recently developed, the 3-D motion of these flow tracers is determined in a completely automated way using sophisticated image processing and PTV algorithms. The resulting 3-D velocity fields are ensemble averaged over a large number of successive cycles to determine the mean characteristics of the flow field as well as to estimate the turbulent fluctuations. This novel technique was applied to three different cylinder head configurations. Each configuration was run for conditions simulating idle operation two different ways: first with both inlet ports open and second with only the primary port open.
Technical Paper

Rapid Characterization of I.C. Engine In-Cylinder Flow at Spark: A Synergistic Approach Using Experimental and Numerical Simulations

1994-10-01
941934
A new methodology for rapidly characterizing the in-cylinder flow field at spark ignition for internal combustion engines is described in this paper. The process involves the use of 3-D particle tracking velocimetry to measure the flow field at intake valve closing (IVC) in a water analog engine simulation, and the use of CFD to compute the evolution of the measured flow field during the compression stroke, by using the experimental 3-D PTV results at IVC as the initial condition for the calculations. The technique has been applied to investigate the in-cylinder flow field of a typical 4 valve engine operating in two different modes; one or two intake ports active. The results indicate that in either mode the flow field at IVC is dominated by a different large scale structure: tumble in the case where both intake ports are active and swirl in the case where only one port is active. The results also indicate that these structures evolve differently during the compression stroke.
Technical Paper

Slow Heating Process of a Heated Pintle-Type Gasoline Fuel Injector

1995-02-01
950068
The heated fuel injectors are designed to bring up fuel temperature so as to reduce HC and CO emissions during cold start. The heated injectors are similar to regular injectors except heaters are placed near the injector inlet and outlet. The heaters, which has the ability to regulate temperature at 180 °C, transform the thermal energy to heat up the liquid fuel through the injector body. The heated injectors are required to heat up fuel to the operating temperature (e.g., 120 °F or 48.9 °C) as quickly as possible and to maintain that fuel temperature for about three minutes. However, test results indicate it takes more than two minutes for the fuel temperature to reach the desired operating temperature. Objective of this work is to find out the mechanisms controlling the slow heating process through CFD analysis. The computational domain covers the whole injector, from inlet to exit, since the heaters located near the top and bottom of the injector.
Technical Paper

Friction and Scuffing Resistance Characteristics of Piston Materials as Investigated by a Reciprocating Test Rig

1995-02-01
951042
Friction and scuffing resistance characteristics of two piston alloy materials have been investigated by using a long-stroke reciprocating test rig. Tests were conducted under the same load, speed, and starved changing to dry lubrication conditions until the scuffing failure occurred, as indicated by a sudden change of the frictional force signal which was monitored continuously. Measured friction coefficient and scuffing threshold and life results were obtained, and the piston alloy with the better scuffing resistance capability has been identified. Surface texture of new and scuffed piston and cylinder bore specimen surfaces have been measured and characterized by a combination of amplitude and spacing parameters.
X