Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Unsteady-Wake Analysis of the Aerodynamic Drag of a Notchback Model with Critical Afterbody Geometry

1992-02-01
920202
For both notchback-type and fastback-type models, it has been found that critical geometries which increase the aerodynamic drag exist, and the time-averaged wake patterns basically consist of an arch vortex behind the rear window and trailing vortices in the wake. The unsteady characteristics of the wake seem to be directly related to aerodynamic drag. However, the unsteady characteristics of these wake patterns for notchback and fastback cars were not clear. The purpose of present paper is to clarify these phenomena. We try to analyze experimentally the unsteady characteristics by measuring the velocity fluctuations in the wake, the pressure fluctuations on the trunk deck and the drag-force fluctuations acting on the model. At the same time, the analysis of the numerical simulation was made by using the same numerical model as the experimental model. The computed flow visualization behind the rear window showed a fluctuating arch vortex.
Technical Paper

Thermal Fluid Analysis By a Mesh Free Simulation - Part 2 Analysis of the Indoor Climate in a Vehicle Cabin Based on the 3D-CAD Model

2011-10-06
2011-28-0136
The thermal fluid field in a vehicle cabin model is analyzed by the mesh free method as well as mentioned in the Part 1. This paper focuses on the steady state indoor climate in the vehicle cabin including the effect of the buoyancy, the heat generation of the driver and heat conduction through the vehicle body surface under the maximum air-cooling condition soaked in a climate chamber in the summer condition for the demonstration of the mesh free method without not only the deformation of the 3D-CAD model but mesh generation. The solar radiation distribution and heat generation through the exhaust pipe from the engine room are simply included in the analysis. Simulated results are compared with experiments in the conditions of both moving and idling states. As a result, no significant difference in air temperature between simulation and experiments can be obtained in both conditions.
Technical Paper

Thermal Fluid Analysis by a Mesh Free Simulation - Part 1 Analysis of the Thermal Fluid Field in a Headlamp Based on the Real 3D-CAD Model

2011-10-06
2011-28-0135
The thermal fluid field in a headlamp based on the real 3D-CAD model is analyzed by a mesh free method. The conducted method is a new CFD (Computational Fluid Dynamics) solver based on the couples of the points whose density is controlled scattered in the analysis space including the boundaries, which leads to much reduce the hand-working time in the deformation of the 3D-CAD model for the mesh generation. This paper focuses on the steady state airflow field in a headlamp under the conditions of natural ventilation including the effect of the buoyancy and the heat generation of the lamp surface for the demonstration of the conducted method without not only the deformation of the real 3D-CAD model but mesh generation. The differences of the pressure outlet conditions and heat generation of the headlamp on the amount of the ventilation are also experimented.
Technical Paper

Correlation Tests Between Japanese Full-Scale Automotive Wind Tunnels Using the Correction Methods for Drag Coefficient

2005-04-11
2005-01-1457
This paper describes results of the correlation tests between several full-scale automotive wind tunnels in Japan. The tests were carried out during FY 2003 by members of the working group for wind tunnel correlation test, which was organized in JSAE Vehicle Aerodynamics Research Committee. Five wind tunnels were selected, i.e., three open test section type wind tunnels and two closed ones. Four test models were selected, i.e., sedan, station wagon, minivan and hatch back car, all of which are current production models. Tests were done with EADE test conditions. Correlation formulas for drag coefficient, which are based on the previous methods by Mercker and Wiedemann [13] and Mercker [3, 10] respectively for open and closed test section type wind tunnels, were used. Also considered were the differences of the boundary layer thickness between five wind tunnels.
X