Refine Your Search

Topic

Author

Search Results

Journal Article

Engine Friction Accounting Guide and Development Tool for Passenger Car Diesel Engines

2013-10-14
2013-01-2651
The field of automotive engineering has devoted much research to reduce fuel consumption to attain sustainable energy usage. Friction reductions in powertrain components can improve engine fuel economy. Quantitative accounting of friction is complex because it is affected by many physical aspects such as oil viscosity, temperature, surface roughness and component rotation speed. The purpose of this paper is two-fold: first, to develop a useful tool for evaluating the friction in engine and accessories based on test data; second, to exercise the tool to evaluate the fuel economy gain in a drive cycle for several friction reduction technologies.
Journal Article

The Influence of Diesel End-of-Injection Rate Shape on Combustion Recession

2015-04-14
2015-01-0795
The effect of the shape of the EOI was investigated through a pressure-modulated injection system in order to improve the understanding of the last portion of the traditional diesel diffusion combustion process. Here, the combustion recession at EOI is when the combustion of a mixing controlled diesel jet recedes backwards toward the fuel injector nozzle orifice. Combustion recession was observed using combustion luminosity imaging filtered at 309 nm to capture OH* chemiluminescence and 430 nm to capture CH* chemiluminescence, although soot Natural Luminosity (NL) will also be visible in these measurements. Experimental spray vessel results show that for relatively slow EOI decelerations below 1 ×106 to 2 ×106 m/s2, combustion strongly recesses completely back to the nozzle in both OH* and CH*/NL imaging. 1-D jet mixing calculations add support that this strong recession is indeed fuel rich.
Technical Paper

Integrated Diagnostics for the Vehicle System

1991-11-01
912683
How will a mechanic troubleshoot the heavy duty vehicle of the future? Will he or she have to be both retriever and integrator of data collected from multiple black boxes on the vehicle? How many tools will it take? Is there a definition of a vehicle system “diagnostic environment” that needs to be developed in order to create a solution to this problem? This paper will attempt to create the system focus for vehicle diagnostics that is required if this industry is to successfully produce the integrated electronic vehicle of the future. Both the on-board and off-board requirements of the diagnostic environment will be examined.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Advanced Technology Fuel System for Heavy Duty Diesel Engines

1997-11-17
973182
Caterpillar Fuel Systems is developing a family of next generation electronic unit injectors that provide the fundamental injection characteristics necessary for emissions and performance improvements for future direct-injection diesel engines. This paper describes the development and design of the mechanically actuated version of Caterpillar's advanced electronic unit injector fuel system to meet the engine customer driven requirements for enhanced injection characteristics with reliability and durability improvements.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

High-Pressure Injection Fuel System Wear Study

1998-02-23
980869
The critical particle size for a high-pressure injection system was determined. Various double-cut test dusts ranging from 0 to 5 μm to 10 to 20 μm were evaluated to determine which test dust caused the high-pressure system to fail. With the exception of the 0- to 5-μm test dust, all test dust ranges caused failure in the high-pressure injection system. Analysis of these evaluations revealed that the critical particle size, in initiating significant abrasive wear, is 6 to 7 μm. Wear curve formulas were generated for each evaluation. A formula was derived that allows the user to determine if the fuel filter effluent will cause harmful damage to the fuel system based on the number of 5-, 10-, and 15-μm particles per milliliter present. A methodology was developed to evaluate fuel filter performance as related to engine operating conditions. The abrasive methodology can evaluate online filter efficiency and associated wear in a high-pressure injection system.
Technical Paper

Aqueous Propylene Glycol Coolant for Heavy Duty Engines

1990-02-01
900434
Cavitation corrosion of cylinder liners in heavy duty engines can be one of the significant limits in engine operating time between overhauls. In both laboratory and engine dynamometer studies, engine coolants based on propylene glycol (PG) have performed better than similar formulations based on ethylene glycol with regard to cast iron cavitation corrosion. The performance of PG base coolant in all other aspects of coolant use was equivalent or superior to both industry standards and existing ethylene glycol (EG) products designed for use in heavy duty engines. Additionally, propylene glycol is cost competitive, readily available, and less toxic compared to ethylene glycol. A propylene glycol base engine coolant is described which assists the heavy duty user in solving many current problems related to cooling system servicing and engine life.
Technical Paper

A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations

2007-04-16
2007-01-0159
A new Computational Fluid Dynamics (CFD) code has been developed in order to overcome the deficiencies of traditional grid generation and mesh motion methods. The new code uses a modified cut-cell Cartesian technique that eliminates the need for the computational grid to coincide with the geometry of interest. The code also includes state-of-the-art numerical techniques and sub-models for simulating the complex physical and chemical processes that occur in engines. Features such as shared and distributed memory parallelization, a multigrid pressure solver and user-specified grid embedding allow for efficient simulations while maintaining the grid resolution necessary for accurate engine modeling. In addition, a new Adaptive Grid Embedding (AGE) technique has been developed and implemented. Sub-models for turbulence, spray injection, spray breakup, liquid drop dynamics, ignition, combustion and emissions are also included in the code.
Technical Paper

Combustion Modeling of Conventional Diesel-type and HCCI-type Diesel Combustion with Large Eddy Simulations

2008-04-14
2008-01-0958
A general combustion model, in the context of large eddy simulations, was developed to simulate the full range of combustion in conventional diesel-type and HCCI-type diesels. The combustion model consisted of a Chemkin sub-model and an Extended Flamelet Time Scale (EFTS) sub-model. Specifically, Chemkin was used to simulate auto-ignition process. In the post-ignition phase, the combustion model was switched to EFTS. In the EFTS sub-model, combustion was assumed to be a combination of two elementary combustion modes: homogeneous combustion and flamelet combustion. The combustion index acted as a weighting factor blending the contributions from these two modes. The Chemkin sub-model neglected the subgrid scale turbulence-chemistry interactions whereas the EFTS model took them into account through a presumed PDF approach. The model was used to simulate an early injection mode of a Cummins DI diesel engine and a mode of a Caterpillar DI diesel engine.
Technical Paper

Extended Oil Drain Performance Capabilities of Diesel Engine Oils

1998-10-19
982718
This paper describes the results of a comprehensive field-testing program conducted in modern low-emission heavy-duty diesel engines to evaluate the extended oil drain capabilities of several diesel engine oils of varying performance levels. The data generated in the 59-truck trial, which was conducted over a two to three year period, provide support for extension of engine oil drain intervals when a premium mineral diesel oil is used rather than a fighting-grade mineral diesel product. The field trial results also document the performance of a premium fully synthetic engine oil at four times conventional oil drain intervals. Engine inspections conducted after 500,000 test miles confirm that the extension of oil drain intervals with premium diesel engine oils has no negative impact on engine durability.
Technical Paper

Statistical Analysis of the Effect of Fleet-tech™ Asphaltene Conditioner on Fuel Economy

2003-10-27
2003-01-3142
It has long been asserted that optimizing injector cleanliness (preventing the formation of deposits and removing them if they are present) can have a positive impact on fuel economy for heavy-duty diesel engines. However limited amounts of field data exist on more recent engines to support these claims. Also, factors such as small test sample size, varying BTU content of fuel and inconsistent duty cycles in test vehicles can often skew fuel economy study results in a field-test environment. This paper will detail an extensive field study (in which care was taken to minimize the effects of the above mentioned factors that can introduce error) to analyze the effect of consistent dispersant/detergent usage on fuel economy for a grocery delivery fleet.
Technical Paper

Interaction Between Fuel Additive and Oil Contaminant: (I) Field Experiences

2003-10-27
2003-01-3139
Fuel additives are used in diesel fuel for various reasons. For example, poor lubricity of some low sulfur and ultra low sulfur fuels necessitate the addition of lubricity additives to maintain acceptable protection of fuel system components. However, with today's high pressure fuel systems and lubricant oil recycling practices, some lubricant mixing with the fuel is unavoidable. As a result, an increase in fuel filter plugging was reported when lubricant components are present in the fuel. This paper shows filter plugging resulted from the interaction of basic lubricant additives with acidic fuel additives. Attempts to reduce the plugging by supplemental fuel additives were technically successful, but not economically feasible. The linkage between filter plugging and additive interactions is demonstrated in this paper. Part II of this series will explore the mechanisms of the additive interactions, and other causes for filter plugging.
Technical Paper

The Development of a Lubricity Enhancing Controlled Release Diesel Fuel Filter

2003-10-27
2003-01-3141
Low lubricity diesel fuels have long been problematic when used in fuel systems due to increased wear tendencies of these types of fuels1. It has been demonstrated that a variety of additives can dramatically increase lubricity for diesel fuels, even at low treatment rates. However these additives must be added consistently for fuel systems to see the benefits associated with enhanced lubricity fuels. That is not always possible in field applications when drivers and/or maintenance personnel are relied upon to dose systems with bottled additives. This paper will detail the development and testing of a solution to the problem of unreliable additive addition in the field, a fuel filter that consistently releases a lubricity enhancing additive into fuel systems. The filter will be shown to have consistent release and effective performance through a variety of laboratory and field evaluations that will be detailed in this paper.
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Technical Paper

Caterpillar Automatic Code Generation

2004-03-08
2004-01-0894
Automatic code generation from models is actively used at Caterpillar for powertrain and machine control development. This technology was needed to satisfy the industry's demands for both increased software feature content, and its added complexity, and a short turn-around time. A pilot development effort was employed initially to roll out this new technology and shape the deployment strategy. As a result of a series of successful projects involving rapid prototyping and production code generation, Caterpillar will deploy MathWorks modeling and code generation products as their department-wide production development capability. The data collected indicated a reduction of person hours by a factor of 2 to 4 depending on the project and a reduction of calendar time by a factor of greater than 2. This paper discusses the challenges, results, and lessons learned, during this pilot effort from the perspectives of both Caterpillar and The MathWorks.
Technical Paper

Effects of Air and Road Surface Temperature on Tire Pavement Noise on an ISO 10844 Surface

2001-04-30
2001-01-1598
Sound pressure level (SPL) measurements of vehicle coast-by runs of a passenger vehicle were performed across a range of temperatures. A controlled test track was used for the runs with six different sets of tires. A small but significant reduction of noise level with positive temperature increases was observed for some but not all tires. The reduction was evident in two of the tires at 53 kph and five of the tires at 80 kph. The SPL of the other tires showed little or no sensitivity to temperature. Frequency analysis of the tire noise showed that noise content above 1000 Hz is most affected by temperature change and noise in the range of 1200 to 2000 Hz is particularly sensitive to temperature changes. However, differences in SPL due to speed and tire type were much greater than that due to temperature
Technical Paper

Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions

2002-03-04
2002-01-1158
A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NOx emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NOx emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NOx through controlled enhancement of in-cylinder mixing.
Technical Paper

Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry

2003-03-03
2003-01-1043
Recent measurements by Siebers et al. have shown that the flame of a high pressure Diesel spray stabilizes under quiescent conditions at a location downstream of the fuel injector. The effects of various ambient and injection parameters on the flame “lift-off” length have been investigated under typical Diesel conditions in a constant-volume combustion vessel. In the present study, the experiments of Siebers et al. have been modeled using a modified version of the KIVA-3V engine simulation code. Fuel injection and spray breakup are modeled using the KH-RT model that accounts for liquid surface instabilities due to the Kelvin-Helmholtz and Rayleigh-Taylor mechanisms. Combustion is simulated using Convergent Thinking's recently developed detailed transient chemistry solver (SAGE) that allows for any number of chemical species and reactions to be modeled.
X