Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

Effects of Multiple Injections and Flexible Control of Boost and EGR on Emissions and Fuel Consumption of a Heavy-Duty Diesel Engine

2001-03-05
2001-01-0195
A study of the combined use of split injections, EGR, and flexible boosting was conducted. Statistical optimization of the engine operating parameters was accomplished using a new response surface method. The objective of the study was to demonstrate the emissions and fuel consumption capabilities of a state-of-the-art heavy -duty diesel engine when using split injections, EGR, and flexible boosting over a wide range of engine operating conditions. Previous studies have indicated that multiple injections with EGR can provide substantial simultaneous reductions in emissions of particulate and NOx from heavy-duty diesel engines, but careful optimization of the operating parameters is necessary in order to receive the full benefit of these combustion control techniques. Similarly, boost has been shown to be an important parameter to optimize. During the experiments, an instrumented single-cylinder heavy -duty diesel engine was used.
Technical Paper

Design and Optimization of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

2002-03-04
2002-01-1211
The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2001 competition. The base vehicle is a 2000 Chevrolet Suburban. Our FutureTruck is nicknamed the “Moollennium” and weighs approximately 2427 kg. The vehicle uses a high efficiency, 2.5 liter, turbo-charged, compression ignition common rail, direct-injection engine supplying approximately 104 kW of peak power and a three phase AC induction motor that provides an additional 68.5 kW of peak power. This hybrid drivetrain is an attractive alternative to the large displacement V8 drivetrain, as it provides comparable performance with lower emissions and fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) urban driving cycle fuel economy of 11.24 km/L (26.43 mpg) with California Ultra Low Emission Vehicle (ULEV) emissions levels.
Technical Paper

Caterpillar’s Autonomous Journey - The Argument for Autonomy

2016-09-27
2016-01-8005
Today’s business climate and economy demand new, innovative strategies from the initial kickoff of research and development - to the mining of ore from the earth - to the final inspection of a finished product in a mid-western factory. From startup companies with two employees to the largest companies, the world faces new and challenging requirements every day. The demands from companies, customers, executives, and shareholders continue to drive for higher outputs with more efficient use of personnel and investments. Fortunately, the rate of technology continues to exponentially accelerate, which allows those at the cutting edge of technology to capitalize. Caterpillar has been a pioneer in advanced technology since its inception and has been developing the foundation for autonomy over the past four decades.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Technical Paper

Application of an Elastomeric Tuned Mass Damper for Booming Noise on an Off-highway Machine

2013-05-13
2013-01-2010
NVH is gaining importance in the quality perception of off-highway machine performance and operator comfort. Booming noise, a low frequency NVH phenomenon, can be a significant sound issue in an off-highway machine. In order to increase operator comfort by decreasing the noise levels and noise annoyance, a tuned mass damper (TMD) was added to the resonating panel to suppress the booming. Operational deflection shapes (ODS) and experimental modal analysis (EMA) were performed to identify the resonating panels, a damper was tuned in the lab and on the machine to the specific frequency, machine operational tests were carried out to verify the effectiveness of the damper to deal with booming noise.
Technical Paper

Effects of Mixture Preparation Characteristics on Four-Stroke Utility Engine Emissions and Performance

1996-08-01
961738
A laboratory-based fuel mixture system capable of delivering a range of fuel/air mixtures has been used to observe the effects of differing mixture characteristics on engine combustion through measurement and analysis of incylinder pressure and exhaust emissions. Fuel air mixtures studied can be classified into four different types: 1) Completely homogeneous fuel/air mixtures, where the fuel has been vaporized and mixed with the air prior to entrance into the normal engine induction system, 2) liquid fuel that is atomized and introduced with the air to the normal engine induction system, 3) liquid fuel that is atomized, and partially prevaporized but the air/fuel charge remains stratified up to introduction to the induction system, and 4) the standard fuel metering system. All tests reported here were conducted under wide open throttle conditions. A four-stroke, spark-ignited, single-cylinder, overhead valve-type engine was used for all tests.
Technical Paper

Coordinated Control of Multi-Degree-of Freedom Fuel Systems

1997-04-01
971559
This paper identifies potential performance benefits and computational costs of applying advanced multivariable control theory concepts to coordinate the control of a general multi-degree-of-freedom fuel system. The control variables are injection duration and pressure. The focus is on the design of a robust multi-input multi-output controller using H-infinity and mu synthesis methodology to coordinate the control of injection duration and pressure; reduce overshoots and system sensitivity to parameter variations caused by component aging. Model reduction techniques are used to reduce the order of the H-infinity controller to make it practically implementable. Computer simulation is used to test the robust performance of a generic engine and fuel system model controlled by the reduced order H-infinity controller and a traditional proportional plus integral controller.
Technical Paper

Development of the Hydraulic System for the Caterpillar 416 Backhoe Loader

1986-09-01
861290
A key ingredient in the development of the Caterpillar 416 backhoe loader was the development of the hydraulic system. A load sensing, pressure compensated system was selected on the basis of its best being able to meet design goals. The result is a backhoe loader in which the hydraulic system contributes greatly to the vehicle's overall acceptance by operating efficiently and utilizing low lever efforts for ease of control.
X