Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental Investigation of the Influence of Boost on Combustion and Particulate Emissions in Optical and Metal SGDI-Engines Operated in Stratified Mode

2016-04-05
2016-01-0714
Boosting and stratified operation can be used to increase the fuel efficiency of modern gasoline direct-injected (GDI) engines. In modern downsized GDI engines, boosting is standard to achieve a high power output. However, boosted GDI-engines have mostly been operated in homogenous mode and little is known about the effects of operating a boosted GDI-engine in stratified mode. This study employed optical and metal engines to examine how boosting influences combustion and particulate emission formation in a spray-guided GDI (SGDI), single cylinder research engine. The setup of the optical and metal engines was identical except the optical engine allowed optical access through the piston and cylinder liner. The engines were operated in steady state mode at five different engine operating points representing various loads and speeds. The engines were boosted with compressed air and operated at three levels of boost, as well as atmospheric pressure for comparison.
Technical Paper

Experimental Investigation on the Influence of Boost on Emissions and Combustion in an SGDI-Engine Operated in Stratified Mode

2015-09-06
2015-24-2433
Among many techniques used for increasing fuel efficiency of a modern Gasoline Direct-Injected (GDI) engine are boosting and stratified operation. In modern downsized GDI engines, boosting is standard in order to achieve a high power output. Boosted GDI-engines have however mostly been operated in homogenous mode and little is known on the effects of operating a boosted GDI-engine in stratified mode. This paper presents the influence on combustion, standard emissions and particulate size distribution in a Spray-Guided, Gasoline, Direct-Injected (SGDI), single cylinder, research engine operated with various levels of boost. The engine was operated in steady state mode at five engine operating points of various load and speed. The engine was boosted with a Roots blower and operated at four levels of boost as well as atmospheric pressure for comparison. The engine was fueled with market gasoline (95 RON) blended with 10% ethanol.
Technical Paper

High-Speed Photography of Stratified Combustion in an Optical GDI Engine for Different Triple Injection Strategies

2015-04-14
2015-01-0745
To contribute to knowledge required to meet new emission requirements, relationships between multiple injection parameters, degrees of fuel stratification, combustion events, work output and flame luminosity (indicative of particulate abundance) were experimentally investigated using a single-cylinder optical GDI engine. A tested hypothesis was that advancing portions of the mass injected would enhance the fuel-air mixing and thus reduce flame luminescence. An outward-opening piezo actuated fuel injector capable of multiple injections was used to inject the fuel using different triple injection strategies, with various combinations of late and earlier injections leading to various degrees of fuel stratification. Sprays and combustion events were captured using two high-speed cameras and cylinder pressure measurements.
X