Refine Your Search

Topic

Author

Search Results

Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the study is to investigate efficient computational aeroacoustics (CAA) simulation processes to assist the cooling-fan installation design. In this paper we report the current progress of the investigation, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Technical Paper

Quantitative High Speed Stability Assessment of a Sports Utility Vehicle and Classification of Wind Gust Profiles

2020-04-14
2020-01-0677
The automotive trends of vehicles with lower aerodynamic drag and more powerful drivetrains have caused increasing concern regarding stability issues at high speeds, since more streamlined bodies show greater sensitivity to crosswinds. This is especially pronounced for high vehicles, such as sports utility vehicles. Besides, the competitiveness in the automotive industry requires faster development times and, thus, a need to evaluate the high speed stability performance in an early design phase, preferable using simulation tools. The usefulness of these simulation tools partly relies on realistic boundary conditions for the wind and quantitative measures for assessing stability without the subjective evaluation of experienced drivers. This study employs an on-road experimental measurements setup to define relevant wind conditions and to find an objective methodology to evaluate high speed stability.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Technical Paper

A Correction Method for Stationary Fan CFD MRF Models

2009-04-20
2009-01-0178
A common fan model to use in automotive under hood simulations is the Multiple Reference Frame (MRF) model and within the industry, for this specific application, this model is well known to under predict performance. In this paper we have examined the possibilities of correcting this deficiency with a simple “speed correction”. This is done by testing and simulating a production fan in the Volvo Fan Test Rig for two operating speeds, 1200 rpm and 2400 rpm. Pressure rise, fan power and static efficiency are presented as functions of volumetric flow rate. The simulations verify that using the MRF model the common behavior of under predicting pressure rise and performance of the fan occur. In addition, this work shows that; although the MRF is not predicting fan performance correctly it constitutes a reliable fan modeling strategy.
Technical Paper

Soot Evolution in Multiple Injection Diesel Flames

2008-10-06
2008-01-2470
In order to meet future emission regulations, various new combustion concepts are being developed, several of which incorporate advanced diesel injection strategies, e.g. multiple injections, offering attractive potential benefits. In this study the effects of split injections on soot evolution in diesel flames were investigated in a series of flame experiments performed using a high pressure, high temperature (HP/HT) spray chamber and laser-induced incandescence apparatus to measure soot volume fractions. The focus was on split injections with varied dwell times preceded by a short pilot. The results, which were analyzed and compared to results from engine tests, show that net soot production can be decreased by applying an appropriate split injection strategy.
Technical Paper

Modification of a Diesel Oil Surrogate Model for 3D CFD Simulation of Conventional and HCCI Combustion

2008-10-06
2008-01-2410
This paper describes an analysis of the Diesel Oil Surrogate (DOS) model used at Chalmers University (Sweden), including 70 species participating in 310 reactions, and subsequent improvements prompted by the model's systematic tendency to under-predict the combustion intensity in simulations of kinetically-driven combustion modes, e.g. Homogeneous Charged Compression Ignition (HCCI). Key bases of the model are the properties of a model Diesel fuel with the molecular formula C14H28. In the vapor phase, a global reaction decomposes the starting fuel, C14H28, into its constituent components; n-heptane (C7H16) and toluene (C7H8). This global reaction was modified to yield a higher n-heptane:toluene ratio, due to the importance of preserving an n-heptane-like cetane number.
Technical Paper

The Role of Aerodynamics in the 1955 Le Mans Crash

2008-12-02
2008-01-2996
In the 1955 Le Mans race the worst crash in motor racing history occurred and this accident would change the face of motor racing for decades. After the crash numerous investigations on the disaster were performed, and fifty years after some interesting books were launched on the subject. However, a number of key questions remain unsolved; and one open area is the influence of aerodynamics on the scenario, since the Mercedes-Benz 300 SLR involved in the crash was equipped with an air-brake and its influence on the accident is basically unknown. This work may be considered as a first attempt to establish CFD as a tool to aid in resolving aerodynamic aspects in motor sport accidents and in the present paper, CFD has been used to investigate the aerodynamics and estimate the drag and lift coefficients of the Mercedes-Benz 300 SLR used in the Le Mans race of 1955.
Technical Paper

Early Risk Identification and Cost-Benefit Analyses through Ergonomics Simulation

2009-06-09
2009-01-2287
For cost-beneficial reasons simulations with computer manikins have been increasingly used in the automotive industry for prediction of ergonomics problems before the product and work place exist in physical form. The main purpose of ergonomics simulations is to apply biomechanical models and data to assess the acceptability of the physical work load, e.g. working postures, visibility, clearance etc., which could result in requirements to change the design of the product. The aim is to improve ergonomics conditions in manual assembly and to promote a better product quality through improved assemblability (ease of assembly). Many studies have shown a clear correlation between assembly ergonomics and product quality and that poor assembly ergonomics result in impaired product quality and in decreased productivity. Nevertheless, there are remaining difficulties in achieving acceptance for changes of product and production solutions because of poor assembly ergonomics.
Technical Paper

An Investigation and Correction Method of Stationary Fan CFD MRF Simulations

2009-10-01
2009-01-3067
A common fan model to use in automotive under hood simulations is the Multiple Reference Frame (MRF) model and within the industry, for this specific application, this model is well known to under predict performance. In a former paper, referenced 2009-01-0178, a simple “speed correction” of the MRF model was proposed by the authors'. The correction was shown to apply across different operating speeds for a specific fan. In this paper the generality and limitation of this correction across fans of different type, design and dimensions are investigated. Investigated in this paper is as well the sensitivity of the MRF model to specific methodology of use. In this paper it is shown that the speed correction of 14% proposed in the former paper applies widely, hence, although the MRF model is erroneous the error is consistent.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Flow Visualization Study of an HVAC Module Operated in Water

2001-05-14
2001-01-1702
Centrifugal blowers serve as the primary source of airflow and aero-acoustic noise in automotive HVAC modules. Flow field measurements inside blowers indicate very complex flow patterns. A detailed flow visualization study was conducted on an actual HVAC fan module operated in water under dynamically similar conditions as those in air with the purpose of studying the complex flow patterns in order to improve the aerodynamic performance of the fan/scroll casing and diffuser components. Fan-scroll/diffuser interaction was also studied as function of fan speed. Conventional and special (shear thickening) dye injection flow visualization techniques were used to study the complex 3-dimensional vortical and unsteady flow patterns that occur in typical HVAC fans. A major advantage of the flow visualization technique using shear-thickening dye is its usefulness in high the Reynolds number flows that are typically encountered inside HVAC modules.
Technical Paper

The Structure of Cavitation and its Effect on the Spray Pattern in a Single-Hole Diesel Nozzle

2001-05-07
2001-01-2008
The structure and evolution of cavitation in a transparent scaled-up diesel nozzle having a hole perpendicular to the nozzle axis has been investigated using high-speed motion pictures, flash photography and stroboscopic visualization. Observations revealed that, at the inception stage, cavitation bubbles are dominantly seen in the vortices at the boundary layer shear flow and outside the separation zone. Cavitation bubbles grow intensively in the shear layer and develop into cloud-like coherent structures when viewed from the side of the nozzle. Shedding of the coherent cloud cavitation was observed. When the flow was increased further the cloud like cavitation bubbles developed into a large-scale coherent structure extending downstream of the hole. Under this condition the cavitation starts as a mainly glassy sheet at the entrance of the hole. Until this stage the spray appeared to be symmetric.
Technical Paper

It's in the Eye of the Beholder: Who Should be the User of Computer Manikin Tools?

2003-06-17
2003-01-2196
The aim of this study was to examine the influence of computer manikin users' background and knowledge for the results of a computer manikin simulation. Subjects taking part in the study were either production engineers or ergonomists. A manual task that presented production and ergonomics problems was used. The task was simulated prior to the subjects' sessions, using the computer manikin software Jack. During the sessions, the animated simulation was shown to the test subject. Results show that there are differences in how production engineers and ergonomists interpret results from a manikin simulation. Depending on the user's background, certain aspects that are difficult to visualise with the computer manikin were interpreted differently, regarding e.g. detected problems and holistic perspectives.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

2002-03-04
2002-01-0239
SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

Axial Fan Performance Predictions in CFD, Comparison of MRF and Sliding Mesh with Experiments

2011-04-12
2011-01-0652
Underhood Thermal Management has become an important topic for the majority of automotive OEM's. To keep combustion engines cool and manage waste heat efficiently is an important part in the design of vehicles with low fuel consumption. To be able to predict cooling performance and underhood airflow with good precision within a virtual design process, it is of utmost importance to model and simulate the cooling fan efficiently and accurately, and this has turned out to be challenging. Simulating the cooling fan in a vehicle installation involves capturing complex fluid dynamic interaction between rotating blades and stationary objects in the vicinity of the fan. This interaction is a function of fan rotation rate, fan blade profile, upstream and downstream installation components. The flow is usually highly turbulent and small geometry details, like the distance between the blade tip and the fan shroud, have strong impact on the fan performance characteristics.
Technical Paper

Automated Flexible Tooling for Wing Box Assembly: Hexapod Development Study

2016-09-27
2016-01-2110
The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. To meet this challenge, industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) - a European Union funded project with 31 partners - aims to address various aspects of aero-structure assembly with a special attention directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the assembly process. The developed solution constitutes the use of synchronized hexapods for the assembly of front spar to upper cover whereas another hexapod was developed to install a rib by using of a force feedback sensor.
X