Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Pressure Drop Characteristics Through DPF with Various Inlet to Outlet Channel Width Ratios

2015-04-14
2015-01-1019
The main objective of this paper was to investigate the pressure drop characteristics of ACT (asymmetric cell technology) design filter with various inlet mass flow rates, soot loads and ash loads by utilizing 1-D computational Fluid Dynamics (CFD) method. The model was established by AVL Boost code. Different ratios of inlet to outlet channel width inside the DPF (Diesel Particulate Filter) were investigated to determine the optimal structure in practical applications, as well as the effect of soot and ash interaction on pressure loss. The results proved that pressure drop sensitivity of different inlet/outlet channel width ratios increases with the increased inlet mass flow rate and soot load. The pressure drop increases with the increased channel width ratio at the same mass flow rate. When there is little soot deposits inside DPF, the pressure drop increases with the bigger inlet.
Technical Paper

Achievement of Diesel Low Temperature Combustion through Higher Boost and EGR Control Coupled with Miller Cycle

2015-04-14
2015-01-0383
Diesel engines generally tend to produce a very low level of NOx and soot through the application of Miller Cycle, which is mainly due to the low temperature combustion (LTC) atmosphere resulting from the Miller Cycle utilization. A CFD model was established and calibrated against the experimental data for a part load operation at 3000 r/min. A designed set of Miller-LTC combustion modes were analyzed. It is found that a higher boost pressure coupled with EGR can further tap the potential of Miller-LTC cycle, improving and expanding the Miller-LTC operation condition. The simulated results indicated that the variation of Miller timings can decrease the regions of high temperatures and then improve the levels and trade-off relationship of NOx and soot. The in-cylinder peak pressure and NOx emissions were increased dramatically though the problem of insufficient intake charge was resolved by the enhanced intake pressure that is equivalent to dual-stage turbo-charging.
X