Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Path Tracking Control of Autonomous Vehicle on Curved Road Considering Multi-Source Uncertainty

2021-12-14
2021-01-7033
Aiming at the system multi-source uncertainty problem during the path tracking control of intelligent vehicle in complex curved road environments, the model predictive control algorithm based on the extended state observer is proposed. Firstly, based on the vehicle dynamics theory, intelligent vehicle path tracking error model is established that takes into account the uncertainty of vehicle parameters and the uncertainty of road curvature, road attachment conditions and other random interference factors, and an online random disturbance estimation method based on the extended state observer is proposed. At the same time, the whale optimization algorithm is used to optimize the relevant parameters of the expanded state observer. Then combined with interference estimation to establish intelligent vehicle path tracking accuracy and driving stability index functions and constraints, and design a path tracking model predictive control method based on the extended state observer.
Technical Paper

Game Theory and Reinforcement Learning based Smart Lane Change Strategies

2022-03-29
2022-01-0221
With the development of science and technology, breakthroughs have been made in the fields of intelligent algorithms, environmental perception, chip embedding, scene analysis, and multi-information fusion, which together prompted the wide attention of society, manufacturers and owners of autonomous vehicles. As one of the key issues in the research of autonomous vehicles, the research of vehicle lane change algorithm is of great significance to the safety of vehicle driving. This paper focuses on the conflict of interest between the lane-changing vehicle and the target lane vehicle in the fully autonomous driving environment, and proposes the method of coupling kinematics and game theory and reinforcement learning based optimization, so that when the vehicle is in the process of lane changing game, the lane-changing vehicle and the target lane vehicle can make decisions that are beneficial to the balance of interests of both sides.
Technical Paper

Local Trajectory Planning and Control of Smart Vehicle Based on Enhanced Particle Swarm Optimization Method

2022-03-29
2022-01-0224
Intelligent driving is an important research direction in the field of artificial intelligence. The fourth industrial revolution represented by the Internet of things provides more prospects for the development of intelligent vehicles. Trajectory planning and tracking control is one of the key technologies of intelligent driving vehicle. This paper takes intelligent driving vehicle as the starting point and establishes a research method of intelligent vehicle trajectory planning based on particle swarm optimization, based on the vehicle kinematics and dynamics model, a model predictive control algorithm is built for trajectory tracking control, the simulation scene is built by Prescan, the vehicle dynamics parameters are set in Carsim, and then the joint simulation is carried out with Simulink.
Technical Paper

Reinforcement Learning Enhanced New Energy Vehicle Dynamic Subsidy Strategies

2022-03-29
2022-01-0226
In recent years, game theory and reinforcement learning have become very popular research fields in today's society. As the most strategic analysis and optimization research method, they can be used in the study of subsidy strategy of China's new energy automobile industry to solve the problems caused by the government's subsidy of new energy vehicles. This paper studies the evaluation methods and strategy optimization methods of government subsidy strategies in different situations, and applies them to the subsidy strategies and other strategy optimization problems of new energy vehicles in China. Firstly, based on game theory, this paper studies the evaluation method of government subsidy strategy in the case of “double reciprocity” and “one strong and one weak” by constructing the game process of “double reciprocity” enterprises and “one strong and one weak” enterprises.
Technical Paper

Intersection Signal Control Based on Speed Guidance and Reinforcement Learning

2023-04-11
2023-01-0721
As a crucial part of the intelligent transportation system, traffic signal control will realize the boundary control of the traffic area, it will also lead to delays and excessive fuel consumption when the vehicle is driving at the intersection. To tackle this challenge, this research provides an optimized control framework based on reinforcement learning method and speed guidance strategy for the connected vehicle network. Prior to entering an intersection, vehicles are focused on in a specific speed guidance area, and important factors like uniform speed, acceleration, deceleration, and parking are optimized. Conclusion, derived from deep reinforcement learning algorithm, the summation of the length of the vehicle’s queue in front of the signal light and the sum of the number of brakes are used as the reward function, and the vehicle information at the intersection is collected in real time through the road detector on the road network.
Technical Paper

Research on Crack Detection Method of Self-Piercing Riveting

2023-04-11
2023-01-0863
Compared with traditional welding, self-piercing riveting technology has unique advantages and is widely used in automobile lightweight technology. The riveting quality of self-piercing riveting is closely related to the safety and durability of automobiles. The detection of riveting quality has gradually become an important part of the automobile manufacturing process. The generation of surface cracks under self-piercing riveting will affect the riveting strength, which in turn affects the riveting quality. Therefore, the detection of riveting external quality is transformed into the detection of riveting surface cracks. The existing artificial vision-based riveting lower surface crack recognition technology is inefficient, subjective and cannot be applied on a large scale. Therefore, this paper will propose a local-overall strategy based on image processing and computer vision.
Technical Paper

Crack Detection and Section Quality Optimization of Self-Piercing Riveting

2023-04-11
2023-01-0938
The use of lightweight materials is one of the important means to reduce the quality of the vehicle, which involves the connection of dissimilar materials, such as the combination of lightweight materials and traditional steel materials. The riveting quality of self-piercing riveting (SPR) technology will directly affect the safety and durability of automobiles. Therefore, in the initial joint development process, the quality of self-piercing riveting should be inspected and classified to meet safety standards. Based on this, this paper divides the self-piercing riveting quality into riveting appearance quality and riveting section quality. Aiming at the appearance quality of riveting, the generation of cracks on the lower surface of riveting will seriously affect the riveting strength. The existing method of identifying cracks on the lower surface of riveting based on artificial vision has strong subjectivity, low efficiency and cannot be applied on a large scale.
Technical Paper

Vehicle Forward Collision Warning Based on Improved Deep Neural Network

2023-04-11
2023-01-0743
Forward Collision Warning System is an important part of vehicle active safety system, it can reduce the occurrence of rear-end collision accidents with high fatality rate and improve the safety of driving. At present, there are still some outstanding issues to be addressed among the existing forward collision warning systems, such as the high cost of information acquisition based on LiDAR and other high-definition sensors, and the poor real-time performance of target detection based on vision. In view of the aforementioned issues and in order to improve the detection accuracy and real-time requirements of the target detection function of the early warning system, this paper proposes an enhanced deep learning model-based vehicle target detection method, and improves the key techniques of target detection, ranging and speed measurement and early warning strategy in the warning system.
Technical Paper

Automotive Hood Design Based on Machine Learning and Structural Design Optimization

2023-04-11
2023-01-0744
Nowadays, the automobile industry is booming and the number of vehicles is proliferating while the road traffic environment is also deteriorating. Therefore, attention should be paid to the protection of vulnerable road users in traffic accidents, such as pedestrians. In order to reduce the pedestrians’ head injury in collision accidents, in this study, the vehicle engine hood which responds significantly to head injuries was taken as the design object, so as to put forward a new optimization design process. The parameters of the hood’s main components, manufacturing materials and structural scheme were considered to carry out simultaneous optimization from various aspects such as pedestrian protection and hood stiffness.
Technical Paper

Research on Vulnerable Road User Detection Algorithm based on Improved Deep Learning

2023-12-20
2023-01-7050
This paper proposes a detection algorithm based on deep learning for Vulnerable Road Users such as pedestrians and cyclists, which is improved on the basis of YOLOv5 network model. (1) Aiming at the problems of low resolution and insufficient information for small targets, a multi-scale feature fusion method is adopted to integrate shallow features with deep features.
Technical Paper

Signal Control of Urban Expressway Ramp Based on Reinforcement Learning

2024-04-09
2024-01-2875
With economic development and the increasing number of vehicles in cities, urban transport systems have become an important issue in urban development. Efficient traffic signal control is a key part of achieving intelligent transport. Reinforcement learning methods show great potential in solving complex traffic signal control problems with multidimensional states and actions. Most of the existing work has applied reinforcement learning algorithms to intelligently control traffic signals. In this paper, we investigate the agent-based reinforcement learning approach for the intelligent control of ramp entrances and exits of urban arterial roads, and propose the Proximal Policy Optimization (PPO) algorithm for traffic signal control. We compare the method controlled by the improved PPO algorithm with the no-control method.
X