Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Path Tracking Control of Autonomous Vehicle on Curved Road Considering Multi-Source Uncertainty

2021-12-14
2021-01-7033
Aiming at the system multi-source uncertainty problem during the path tracking control of intelligent vehicle in complex curved road environments, the model predictive control algorithm based on the extended state observer is proposed. Firstly, based on the vehicle dynamics theory, intelligent vehicle path tracking error model is established that takes into account the uncertainty of vehicle parameters and the uncertainty of road curvature, road attachment conditions and other random interference factors, and an online random disturbance estimation method based on the extended state observer is proposed. At the same time, the whale optimization algorithm is used to optimize the relevant parameters of the expanded state observer. Then combined with interference estimation to establish intelligent vehicle path tracking accuracy and driving stability index functions and constraints, and design a path tracking model predictive control method based on the extended state observer.
Technical Paper

Recognition of Surrounding Vehicles Driving Behavior Based on Gaussian Mixture Model-Hidden Markov Model for Autonomous Vehicle

2021-12-15
2021-01-7020
Vehicle driving behavior recognition is critical to improve the safety and rationality of autonomous vehicle decision-making and planning in heterogeneous vehicle mixed scenarios. Aiming at the problems that traditional driving behavior recognition methods only consider a single driving behavior, which has insufficient recognition accuracy, and the lack of consideration of the impact on the neighborhood between traffic subjects, the algorithm robustness is poor. A driving behavior recognition method based on Gaussian mixture hidden Markov model (GMM-HMM) is proposed. Firstly, preprocess the NGSIM data sample, take the surrounding vehicles lateral displacement, lateral speed are taken as the HMM observation sequence, the HMM driving behavior recognition model is established. Then, the Baum-Welch algorithm and the Viterbi algorithm are used to train the parameters of the HMM to obtain Hidden state sequence of driving behavior.
Technical Paper

Path Planning Algorithm of Intelligent Vehicle Based on Improved Visibility Graphs

2018-08-07
2018-01-1581
Presently, the visibility graphs algorithm is mainly applied for path planning of indoor mobile robot. It only considers the constraints such as travelling time and move distance. The road lane and vehicle dynamics constraints are not deal with usually. In this paper, a local path planning algorithm based on improved visibility graphs is proposed for intelligent vehicle on structured road. First, free state space (FSS) is established based on ago-vehicle state, road lane and traffic condition for permitting ago-vehicle move safely. In FSS, the vehicle’s maneuver in preview distance can be inferred and the local target point can be designated. Next, sampling points is created in FSS. Combined with local target point, initial point and sampling points, road network can be generated consequently. Then, the approachable path in the road network are evaluated by constrains of the Euclidean distance and the vehicle dynamics constraints.
Technical Paper

Game Theory and Reinforcement Learning based Smart Lane Change Strategies

2022-03-29
2022-01-0221
With the development of science and technology, breakthroughs have been made in the fields of intelligent algorithms, environmental perception, chip embedding, scene analysis, and multi-information fusion, which together prompted the wide attention of society, manufacturers and owners of autonomous vehicles. As one of the key issues in the research of autonomous vehicles, the research of vehicle lane change algorithm is of great significance to the safety of vehicle driving. This paper focuses on the conflict of interest between the lane-changing vehicle and the target lane vehicle in the fully autonomous driving environment, and proposes the method of coupling kinematics and game theory and reinforcement learning based optimization, so that when the vehicle is in the process of lane changing game, the lane-changing vehicle and the target lane vehicle can make decisions that are beneficial to the balance of interests of both sides.
Technical Paper

Local Trajectory Planning and Control of Smart Vehicle Based on Enhanced Particle Swarm Optimization Method

2022-03-29
2022-01-0224
Intelligent driving is an important research direction in the field of artificial intelligence. The fourth industrial revolution represented by the Internet of things provides more prospects for the development of intelligent vehicles. Trajectory planning and tracking control is one of the key technologies of intelligent driving vehicle. This paper takes intelligent driving vehicle as the starting point and establishes a research method of intelligent vehicle trajectory planning based on particle swarm optimization, based on the vehicle kinematics and dynamics model, a model predictive control algorithm is built for trajectory tracking control, the simulation scene is built by Prescan, the vehicle dynamics parameters are set in Carsim, and then the joint simulation is carried out with Simulink.
Technical Paper

Research on Vulnerable Road User Detection Algorithm based on Improved Deep Learning

2023-12-20
2023-01-7050
This paper proposes a detection algorithm based on deep learning for Vulnerable Road Users such as pedestrians and cyclists, which is improved on the basis of YOLOv5 network model. (1) Aiming at the problems of low resolution and insufficient information for small targets, a multi-scale feature fusion method is adopted to integrate shallow features with deep features.
Technical Paper

Signal Control of Urban Expressway Ramp Based on Reinforcement Learning

2024-04-09
2024-01-2875
With economic development and the increasing number of vehicles in cities, urban transport systems have become an important issue in urban development. Efficient traffic signal control is a key part of achieving intelligent transport. Reinforcement learning methods show great potential in solving complex traffic signal control problems with multidimensional states and actions. Most of the existing work has applied reinforcement learning algorithms to intelligently control traffic signals. In this paper, we investigate the agent-based reinforcement learning approach for the intelligent control of ramp entrances and exits of urban arterial roads, and propose the Proximal Policy Optimization (PPO) algorithm for traffic signal control. We compare the method controlled by the improved PPO algorithm with the no-control method.
X