Refine Your Search

Topic

Author

Search Results

Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Journal Article

Optimizing Electric Vehicle Battery Life through Battery Thermal Management

2011-04-12
2011-01-1370
In order to define and to optimize a thermal management system for a high voltage vehicular battery, it is essential to understand the environmental factors acting on the battery and their influence on battery life. This paper defines a calendar life aging model for a battery, and applies real world environmental and operating conditions to that model. Charge and usage scenarios are combined with various cooling/heating approaches. This set of scenarios is then applied to the calendar life model, permitting optimization of battery thermal management strategies. Real-world battery life can therefore be maximized, and trade-offs for grid energy conversion efficiency and fuel economy/vehicle range can be determined.
Journal Article

Combined Variation Modeling of Structural and Tuning Components for Vehicle Performance Assessment

2013-04-08
2013-01-0944
During the vehicle development process, dimensional variation simulation modeling has been applied extensively to estimate the effects of build variation on the final product. Traditional variation simulation methods analyze the tolerance inputs of structural components, but do not account for any compliance effects due to stiffness variation in tuning components, such as bushings, springs, isolators, etc., since both product and process variation are simulated based on rigid-body assumptions. Vehicle performance objectives such as ride and handling (R&H) often involve these compliance metrics. The objective of this paper is to present a method to concurrently simulate the tolerance from the structural parts as well as the variability of compliance from the tuning components through an integration package. The combination of these two highly influential effects will allow for a more accurate prediction and assessment of vehicle performance.
Technical Paper

A Comparison of Heavy-Duty Diesel Truck Engine Smoke Opacities at High Altitude and at Sea Level

1991-08-01
911671
A study was conducted by the California Air Resources Board to investigate the effects that altitude has on in-use heavy-duty diesel truck smoke opacities. The understanding of these effects may allow for the establishment of a high altitude opacity standard for diesel trucks operating at or above altitudes of 5800 feet. During a three-week study, 170 heavy-duty diesel trucks were tested at an altitude of 5,820 feet using a test procedure consisting of rolling acceleration and snap idle tests. Eighty-four (84) of these trucks were recaptured and retested at an altitude of 125 feet. Results from a regression analysis indicates that, on average, truck smoke opacities increased by 23 opacity points when tested at altitudes near 6000 feet. Possible high altitude cutpoints and failure rates are also discussed.
Journal Article

Rainflow Counting Based Block Cycle Development for Fatigue Analysis using Nonlinear Stress Approach

2013-04-08
2013-01-1206
An accurate representation of proving ground loading is essential for nonlinear Finite Element analysis and component fatigue test. In this paper, a rainflow counting based multiple blocks loading development procedure is described. The procedure includes: (1) Rainflow counting analysis to obtain the relationship between load range and cumulative repeats and the statistical relationship between load range and mean load; (2) Formation of preliminary multiple loading blocks with specified load range, mean load, and the approximate cycle repeats, and construction of the preliminary multiple loading blocks; (3) Calibration and finalization of the repeats for preliminary multiple loading blocks according to the equivalent damage rule, meaning that the damage value due to the block loads is equivalent to that from a PG loading.
Technical Paper

Investigation of Ultrafine Particle Number Measurements from a Clean Diesel Truck Using the European PMP Protocol

2007-04-16
2007-01-1114
The sampling protocol proposed by the international PMP program for determination of particle emissions from clean light-duty vehicles was applied to the emissions from a California heavy-duty trap-equipped diesel truck. CARB is interested in developing opinions about the potential of this new European approach for emission determination and in exploring its utility for use in California. In this exercise, the use of various commercially available instruments for counting and sizing particles in the context of the PMP recommendations are explored. A single vehicle on a chassis dynamometer was exercised over steady-state and transient cycles. Multiple measurements of gaseous, mass, and particle emissions were collected in order to determine statistical significance. The PMP approach yielded particle emission measurements with higher precision and accuracy than the reference mass-based emission measurement.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

Further CFD Studies for Detailed Tires using Aerodynamics Simulation with Rolling Road Conditions

2010-04-12
2010-01-0756
In an environment of tougher engineering constraints to deliver tomorrow's aerodynamic vehicles, evaluation of aerodynamics early in the design process using digital prototypes and simulation tools has become more crucial for meeting cost and performance targets. Engineering needs have increased the demands on simulation software to provide robust solutions under a range of operating conditions and with detailed geometry representation. In this paper the application of simulation tools to wheel design in on-road operating conditions is explored. Typically, wheel and wheel cover design is investigated using physical tests very late in the development process, and requires costly testing of many sets of wheels in an on-road testing environment (either coast-down testing or a moving-ground wind-tunnel).
Technical Paper

Determination of Vehicle Resistance Curve in Engine Cooling System Design

2010-04-12
2010-01-0933
A process to create a vehicle resistance curve based on airflow predictions using Computational Fluid Dynamics (CFD) simulation technique is presented. 1-dimensional engine cooling system simulation tool KULI is used to compute the coefficients of vehicle resistance curve. A full factorial Design of Experiment (DOE) established the relationship between the coefficients and the sum of absolute difference between KULI and CFD predictions. The NLPQL optimization routine is used to accurately predict the coefficients so that sum of absolute difference between KULI and CFD predictions is minimized.
Technical Paper

Emissions of HFC-134a from Light-Duty Vehicles in California

2004-05-10
2004-01-2256
The current refrigerant in mobile air conditioning (AC) systems, HFC-134a (also known as R134a), is a potent greenhouse gas (GHG) with a global-warming potential (GWP) of 1300. Its emissions from 2009 and subsequent model-year (MY) light-duty vehicles may be regulated under the terms of a law (Sec. 43108.5, Health and Safety Code) adopted in California in 2002. To support regulation development, we have estimated direct emissions of HFC-134a from vehicular AC systems in California by a novel, three-prong method that uses: 1) data on the consumption of HFC-134a by California commercial fleets, 2) surveys of vehicle owners on AC system repair incidence, and 3) data on repair incidence among California commercial fleet vehicles. Although these sources do not report direct emission rates of HFC-134a, the data reflect actual leakage integrated over long periods from vehicles in all stages of useful life.
Technical Paper

Interlaboratory Cross-Check of Heavy-Duty Vehicle Chassis Dynamometers

2002-10-21
2002-01-2879
Six laboratories capable of chassis-testing heavy-duty vehicles participated in a crosscheck program designed to compare emissions results from a Ford L-9000. The single-axle vehicle was shipped to each laboratory and tested through a series of UDDS and steady-state cycles. The resulting data were compared statistically using reproducibility and repeatability analyses. Although one lab produced some results that significantly differed from the other five, the remaining labs produced comparable results. TPM, CO and THC were the most variable while NOX and CO2 were most stable. Lab differences included atmospheric and environmental conditions, road-load curve application and drivers. Comparison of steady state and transient tests suggest that driver variability is not a major factor.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Laboratory Testing of a Continuous Emissions Monitor for Trace Level Sulfur Dioxide

2016-04-05
2016-01-0986
The measurement of SO2 levels in vehicle exhaust can provide important information in understanding the relative contribution of sulfur and sulfate from fuel vs. oil source to PM. For this study, a differential optical absorption spectrometer (DOAS) that can measure SO2 down to 20 ppbV in real-time was built and evaluated. The DOAS consisted of an extractive sampling train, a cylindrical sampling cell with a single-path design to minimize cell volume, a spectrometer, and a deuterium lamp light source with a UVC range of ∼200-230 nanometer (nm). Laboratory tests showed detection limits were approximately in the range of 12 to 15 ppbV and showed good linearity over SO2 concentration ranges of 20 to 953 ppbV. Interference tests showed some interference by NO and by NH3, at levels of 300 ppmV and 16.6 ppmV, respectively.
Technical Paper

CFD Analysis of Various Automotive Bodies in Linear Static Pressure Gradients

2012-04-16
2012-01-0298
Establishing data adjustments that will give an interference free result for bluff bodies in automotive wind tunnels has been pursued for at least the last 45 years. Recently, the Two-Measurement correction method that yields a wake distortion adjustment for open jet wind tunnels has shown promise of being able to adjust for many of the effects of non-ideal static pressure gradients on bluff automotive bodies. Utilization of this adjustment has shown that a consistent drag results when the vehicle is subjected to the various gradients generated in open jet wind tunnels. What has been lacking is whether this consistent result is independent of the other tunnel interference effects. The studies presented here are intended to fill that gap on the performance of the two-measurement technique. The subject CFD studies are designed to eliminate all wind tunnel interference effects except for the variation of the (linear) static pressure gradient.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries

2013-04-08
2013-01-1546
Due to their high energy density and low self-discharge rates, lithium-ion batteries are becoming the favored solution for portable electronic devices and electric vehicles. Lithium-Ion batteries require special charging methods that must conform to the battery cells' power limits. Many different charging methods are currently used, some of these methods yield shorter charging times while others yield more charge capacity. This paper compares the constant-current constant-voltage charging method against the time pulsed charging method. Charge capacity, charge time, and cell temperature variations are contrasted. The results allow designers to choose between these two methods and select their parameters to meet the charging needs of various applications.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Technical Paper

Techniques for Contact Considerations in Fatigue Life Estimations of Automotive Structures

2013-04-08
2013-01-1201
Contacts or interactions commonly exist between adjacent components in automotive structures, and most of the time they dominate stress status of the components. However, when the routine pseudo stress approach is employed in fatigue life estimations, simulating contacts present special challenges. This may result in coarse stress status and corresponding coarser fatigue life estimations at the contact locations. In this paper, concept, development and procedures of two techniques to consider contacts in fatigue life estimations of automotive structures are described in detail. One is still pseudo stress approach based, but employs additional 1-D connection elements to simulate contacts. The other is nonlinear stress approach based, but equivalent constantly repeating cyclic critical load cases are introduced and utilized. The contacts are simulated by interface setup provided in the software.
Technical Paper

A Study of the Relative Benefits of On-Board Diagnostics and Inspection and Maintenance in California

1995-08-01
951944
California is considering adopting an enhanced Inspection and Maintenance (I&M) program (commonly referred to as Smog Check II) beginning with the 1996 calendar year. This program will utilize a targeting scheme to identify vehicles likely to be high emitters and send these vehicles to centralized testing facilities. The remaining fleet of vehicles will be sent to decentralized testing facilities. At these facilities, vehicles will be subjected to steady state loaded mode dynamometer based tests. Simultaneously, all 1996 and later model year passenger cars, light- and medium-duty trucks sold in California will be equipped with an On-Board Diagnostic (OBDII) system. This system is designed to monitor critical emission related components and activate a Malfunction Indicator Light (MIL) when a failure or a drift in calibration is likely to cause emissions to exceed 1.5 times the vehicle certification standards.
Technical Paper

Shape Recovery Simulation of Flexible Airdam

2013-04-08
2013-01-0166
Airdam is an aerodynamic component in automobile and is designed to reduce the drag and increase fuel efficiency. It is also an important styling component. The front airdam below the bumper is to direct the air flow away from the front tires and towards the underbody, where the drag coefficient becomes less. The flexible airdam is made of Santoprene™ - thermoplastic vulcanizates (TPV), which belongs to thermoplastic elastomer (TPE) family. When a vehicle is parked over a parking block, the flexible airdam will be under strain subjected to bending load from the parking block. If the airdam is kept under constant strain for a certain period, a set will occur and the force will decay over a period of time. Due to the force decay, the stress will reduce and this behavior is called as stress relaxation.
X