Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

What's Speed Got To Do With It?

2010-04-12
2010-01-0526
The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Journal Article

Real Time Virtual Temperature Sensor for Transmission Clutches

2011-04-12
2011-01-1230
Many experiments have demonstrated that clutch overheating is a major cause of clutch deterioration. Clutch friction material deterioration not only leads to clutch failure, but also causes poor shift quality. Unfortunately, it is not practical to monitor each individual clutch temperature in a production vehicle due to high costs or technical challenges. This paper introduces a proposal for a virtual clutch temperature sensor to monitor the real time clutch temperature changes in Chrysler transmissions with PWM solenoid based control systems. Both vehicle and laboratory dynamometer (dyno) tests demonstrate that the model results match very closely with the thermocouple temperature measurements under many different driving conditions. The real time virtual temperature sensor provides a tool for clutch surface overheat protection and for design improvement and enhancement to shift quality.
Journal Article

Rotating Clutch Temperature Model Development Using Rapid Prototype Controllers

2012-04-16
2012-01-0625
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have to cope with increasing levels of powertrain system complexity. Achieving these requirements while improving system quality, reducing development cost and improving time to market is a very challenging task. To achieve this goal, a rapid prototype controller was used to develop a new transmission clutch temperature model. This model is used to detect clutch surface overheating, improve design and enhance shift quality.
Journal Article

Forward Collision Warning Timing in Near Term Applications

2013-04-08
2013-01-0727
Forward Collision Warning (FCW) is a system intended to warn the driver in order to reduce the number of rear end collisions or reduce the severity of collisions. However, it has the potential to generate driver annoyances and unintended consequences due to high ineffectual (false or unnecessary) alarms with a corresponding reduction in the total system effectiveness. The ineffectual alarm rate is known to be closely associated with the “time to issue warning.” This results in a conflicting set of requirements. The earlier the time the warning is issued, the greater probability of reducing the severity of the impact or eliminating it. However, with an earlier warning time there is a greater chance of ineffectual warning, which could result in significant annoyance, frequent complaints and the driver's disengagement of the FCW. Disengaging the FCW eliminates its potential benefits.
Journal Article

Transmission Torque Converter Arc Spring Damper Dynamic Characteristics for Driveline Torsional Vibration Evaluation

2013-04-08
2013-01-1483
Torsional vibration dampers are used in automatic and manual transmissions to provide passenger comfort and reduce damage to transmission & driveline components from engine torsionals. This paper will introduce a systematic method to model a torque converter (TC) arc spring damper system using Simdrive software. Arc spring design parameters, dynamometer (dyno) setup, and complete powertrain/driveline system modeling and simulation are presented. Through arc spring dynamometer setup subsystem modeling, the static and dynamic stiffness and hysteresis under different engine loads and engine speeds can be obtained. The arc spring subsystem model can be embedded into a complete powertrain/driveline model from engine to wheels. Such a model can be used to perform the torsional analysis and get the torsional response at any location within the powertrain/driveline system. The new methodology enables evaluation of the TC damper design changes to meet the requirements.
Journal Article

Development of Additional SAE J2643 Standard Reference Elastomers

2011-04-12
2011-01-0017
The first set of SAE J2643 Standard Reference Elastomers (SRE) was developed in 2004. It was composed of a group of 10 compounds covering multiple elastomer families. Since then, more advanced materials from many elastomer families have been introduced to the automotive industry. The purpose of this study is to add a few more reference compounds to SAE J2643, to enhance the portfolio on FKM, AEM and ACM to reflect advancements in elastomer technology, and make it suitable for a variety of fluids, such as transmission fluid and engine oil. Fourteen standard elastomer compounds were involved in this study, covering various materials currently used in automotive powertrain static and dynamic sealing applications. Participants include OEMs, major rubber manufacturers, a fluid additive company and an independent lab. Manufacturers of each test compound provided formulations, designated ingredients from defined sources, and detailed mixing and molding procedures.
Technical Paper

Standardization Proposal for “Automotive-Grade AVRCP” with Respect to In-Car use of Bluetooth Devices.

2010-04-12
2010-01-0689
With regard to the use of portable consumer electronic devices in an automobile, Bluetooth has become a widely accepted method for short range wireless communication between a vehicle and a portable device. One Bluetooth connectivity protocol for this use case is Audio/Visual Remote Control Profile (AVRCP). Currently, AVRCP specifies mandatory commands for both target devices (cellular phones and audio players), as well as for control devices like an audio head unit. However, there is no requirement that control devices and target devices implement the same commands, nor is there a requirement that supported commands utilize information that would be useful in improving the driver's experience (i.e. metadata). This paper will describe the impact of this reality from the perspective of the automotive consumer, and propose an “automotive grade” AVRCP that could provide a more consistent consumer experience in the automotive market.
Technical Paper

Design and Control of Transmission Systems using Physical Model Simulation

2010-04-12
2010-01-0898
Physical modeling has been used by the industry to improve development time and produce a quality product. In this paper, we will describe two methods used in system control to take advantage of the physical model. One method describes a complete transmission physical model with a full system control utilizing co-simulation techniques. Data will be presented, and comparison to vehicle data will be conducted and verified. The second method will illustrate how to utilize the physical model to improve system design and modification. In this method, vehicle data will be used as inputs to the model, the model output will be verified against vehicle output data. The two methods are excellent tools for the Design For Six Sigma process (DFSS design).
Technical Paper

A Design for Six Sigma Approach to Optimize a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness

2011-04-12
2011-01-0720
Environmental concerns and government regulations are factors that have led to an increased focus on fuel economy in the automotive industry. This paper identifies a method used to improve the efficiency of a front-wheel-drive (FWD) automatic transmission. In order to create improvements in large complex systems, it is key to have a large scope, to include as much of the system as possible. The approach taken in this work was to use Design for Six Sigma (DFSS) methodology. This was done to optimize as many of the front-wheel-drive transmission components as possible to increase robustness and efficiency. A focus of robustness, or consistency in torque transformation, is as important as the value of efficiency itself, because of the huge range of usage conditions. Therefore, it was necessary to find a solution of the best transmission component settings that would not depend on specific usage conditions such as temperatures, system pressures, or gear ratio.
Technical Paper

Assessing the Likelihood of Binding in Distorted Stepped Radius Cylinder Bores

2014-04-01
2014-01-0395
Interference assessments of a stepped-radius power-train component moving within a deformed stepped bore often arise during engine and transmission development activities. For example, when loads are applied to an engine block, the block distorts. This distortion may cause a cam or crankshaft to bind or wear prematurely in its journals as the part rotates within them. Within an automatic transmission valve body, care must be taken to ensure valve body distortion under oil pressure, assembly, and thermal load does not cause spool valves to stick as they translate within the valve body. In both examples, the mechanical scenario to be assessed involves a uniform or stepped radius cylindrical part maintaining a designated clearance through a correspondingly shaped but distorted bore. These distortions can occur in cross-sections (“out-of-round”) or along the bore (in an “s” or “banana” shaped distortions).
Technical Paper

Development of a Hybrid Powertrain Active Damping Control System via Sliding Mode Control Scheme

2013-04-08
2013-01-0486
This paper presents the design of a hybrid powertrain damping control algorithm using the sliding mode control (SMC) scheme. Motor control-based active damping control strategy is used to ensure smooth drive line operation and provide the driver with seamless driving experience. In the case of active damping control, motor and engine speeds are measured to monitor the driveline state, and corrective motor torques are generated to dampen out drive line vibrations. Drive lines are prone to internal vibration (engine, clutches and motors) as well as external disturbances caused by road inputs. As such, fast-response actuator-based damping control systems are desirable in a hybrid powertrain application, where a torque converter is generally not used. The most significant aspect of an active damping control algorithm is the error calculation, based on proper states information, and torque determination based on the adaptive control gain applied to the nonlinear system.
Technical Paper

Integrated Virtual Approach for Optimization of Vehicle Sensitivity to Brake Torque Variation

2013-04-08
2013-01-0596
Brake judder is a brake induced vibration that a vehicle driver experiences in the steering wheel or floor panel at highway speeds during vehicle deceleration. The primary cause of this disturbance phenomenon is the brake torque variation (BTV). Virtual CAE tools from both kinematics and compliance standpoints have been applied in analyzing sensitivities of the vehicle systems to BTV. This paper presents a recently developed analytical approach that identifies parameters of steering and suspension systems for achieving optimal settings that desensitize the vehicle response to BTV. The analytical steps of this integrated approach started with creating a lumped mass noise-vibration-harshness (NVH) control model and a separate multi-body dynamics (MBD) suspension model. Then, both models were linked to run in a sequence through optimization software so the results from the MBD model were used as quasi-static inputs to the lumped mass NVH model.
Technical Paper

Optimization of HVAC Panel Aiming Studies using Parametric Modeling and Automated Simulation

2014-04-01
2014-01-0684
In an Automotive air conditioning system, the air flow distribution in the cabin from the HVAC (Heating, ventilation and air conditioning), ducts and outlets is evaluated by the velocity achieved at driver and passenger mannequin aim points. Multiple simulation iterations are being carried out before finalizing the design of HVAC panel duct and outlets until the target velocity is achieved. In this paper, a parametric modeling of the HVAC outlet is done which includes primary and secondary vane creation using CATIA. Java macro files are created for simulation runs in STAR CCM+. ISIGHT is used as an interface tool between CATIA and STARCCM+. The vane limits of outlet and the target velocity to be achieved at mannequin aim points are defined as the boundary conditions for the analysis. Based on the optimization technique and the number of iterations defined in ISIGHT, the vane angle model gets updated automatically in CATIA followed by the simulation runs in STARCCM+.
Technical Paper

Tonal Metrics in the Presence of Masking Noise and Correlation to Subjective Assessment

2014-04-01
2014-01-0892
As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment.
Journal Article

System Security and System Safety Engineering: Differences and Similarities and a System Security Engineering Process Based on the ISO 26262 Process Framework

2013-04-08
2013-01-1419
Today's vehicles contain a number of safety-critical systems designed to help improve overall vehicle safety. Such systems may control vital vehicle functions such as steering, braking and/or propulsion independently of the driver. In today's vehicles, much emphasis has been placed on helping ensure that these safety-critical vehicle systems operate as intended. Applying rigorous system safety engineering principles in developing these safety-critical automotive systems helps ensure that they operate as desired and expected. Less emphasis has been placed to-date on helping ensure cybersecurity of cyber-physical automotive systems. However, this is changing as both the world and the automotive industry become more aware of the potential ramifications of cyber-attacks on vehicles.
Journal Article

Effects of Vehicle Mass and Other Parameters on Driver Relative Fatality Risk in Vehicle-Vehicle Crashes

2013-04-08
2013-01-0466
Regression models are used to understand the relative fatality risk for drivers in front-front and front-left crashes. The field accident data used for the regressions were extracted by NHTSA from the FARS database for model years 2000-2007 vehicles in calendar years 2002-2008. Multiple logistic regressions are structured and carried out to model a log-linear relationship between risk ratio and the independent vehicle and driver parameters. For front-front crashes, the regression identifies mass ratio, belt use, and driver age as statistically significant parameters (p-values less than 1%) associated with the risk ratio. The vehicle type and presence of the ESC are found to be related with less statistical significance (p-values between 1% and 5%). For front-left crashes the driver risk ratio is also found to have a log-log linear relationship with vehicle mass ratio.
X