Refine Your Search

Topic

Search Results

Journal Article

Modeling and Analysis of Powertrain NVH with Focus on Growl Noise

2013-05-13
2013-01-1875
Superior NVH performance is a key focus in the development of new powertrains. In recent years, computer simulations have gained an increasing role in the design, development, and optimization of powertrain NVH at component and system levels. This paper presents the results of a study carried out on a 4-cylinder in-line spark-ignition engine with focus on growl noise. Growl is a low frequency noise (300-700 Hz) which is primarily perceived at moderate engine speeds (2000-3000 rpm) and light to moderate throttle tip-ins. For this purpose, a coupled and fully flexible multi-body dynamics model of the powertrain was developed. Structural components were reduced using component mode synthesis and used to determine dynamics loads at various engine speeds and loading conditions. A comparative NVH assessment of various crankshaft designs, engine configurations, and in- cylinder gas pressures was carried out.
Journal Article

Optimization of a Porous Ducted Air Induction System Using Taguchi's Parameter Design Method

2014-04-01
2014-01-0887
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Technical Paper

Using the Hybrid FE-SEA Method to Predict Structure-borne Noise Transmission in aTrimmed Automotive Vehicle

2007-05-15
2007-01-2181
A Hybrid method that rigorously couples Statistical Energy Analysis (SEA) and Finite Element Analysis (FEA) has been used to predict interior noise levels in a trimmed vehicle due to broadband structure-borne excitation from 200Hz to 1000Hz. This paper illustrates how the Hybrid FE-SEA technique was applied to successfully predict the car response by partitioning the full vehicle into stiff components described with FE and modally dense components described with SEA. Additionally, it is demonstrated how detailed local FE models can be used to improve SEA descriptions of car panels and couplings. The vibration response of the untrimmed body-in-white is validated against experiments. Next, the radiation efficiency and vibration response of bare and trimmed vehicle panels are compared against reference numerical results. Finally, interior noise levels in bare and trimmed configurations are predicted and results from a noise path contribution analysis are presented.
Technical Paper

Reducing Background Noise Levels in Plant SQ Test Booths

2007-05-15
2007-01-2383
As customer awareness of product sound grows, the need exists to ensure that product sound quality is maintained in the manufacturing process. To this end in-process controls that employ a variety of traditional acoustical and alternate sound quality metrics are utilized, usually partly or wholly housed in a test enclosure. Often times these test cells are required to attenuate the background noise in the manufacturing facility so that the device under test can be accurately assessed. While design guidelines exist the mere size and cost of such booths make an iterative build and test approach costly in terms of materials as well as engineering and testing time. In order to expedite the design process and minimize the number of confirmation prototypes, SEA can be utilized to predict the transmission loss based upon material selection and booth construction techniques.
Technical Paper

Modeling Airborne Noise Transmission in a Truck using Statistical Energy Analysis

2007-05-15
2007-01-2432
Statistical Energy Analysis (SEA) was used during the design of a new heavy duty truck. This paper provides an overview of the building and validation process of an airborne SEA model of a typical commercial vehicle. Predictions of interior noise levels are compared against tests. A noise path contribution analysis is presented, demonstrating how the impact of potential design changes on the interior sound levels can be evaluated with an SEA model.
Technical Paper

Attenuation of Vehicle Noise using Different Trunk Insulation Systems

2009-05-19
2009-01-2122
Attenuation of noise from the rear of a vehicle was evaluated for different trunk insulation systems using a combination of poro-elastic material modeling and a full vehicle SEA model. The model considered the interaction between the trunk and the passenger cabin. The sound absorption coefficients and acoustic impedance for each of the material systems used in the trunk were measured and the poro-elastic Biot properties were calculated to define the acoustic treatments in the SEA model. Several levels of acoustical treatment for the trunk were studied ranging from a trunk with no decorative liner to a trunk with a liner and maximum acoustical treatment. The results show the contribution of the trunk material in reducing cabin noise for different levels of noise originating at the rear of the vehicle. These results demonstrate the value of combining poro-elastic material modeling and SEA models for selecting efficient material systems early in a vehicle design.
Technical Paper

Validation of the Inverse Method of Acoustic Material Characterization

2003-05-05
2003-01-1584
There are many software tools in use today that are implementing the Biot, or complementary, method for the evaluation of foam and fiber materials. The justification of this process is to understand which mechanisms of the noise control material are contributing to the noise reduction and to optimize the material based on its acoustic properties. The disadvantage of this method is that it is quite complex and time consuming to test a material in order to extract the underlying properties that govern the acoustic performance. An alternative inverse method for material characterization based on simple impedance tube measurements has been developed lately. This paper recalls the physics and mathematics behind the method and concentrates on its validation.
Technical Paper

Noise Contribution Analysis at Suspension Interfaces Using Different Force Identification Techniques

2011-05-17
2011-01-1600
Road-tire induced vibrations are in many vehicles determining the interior noise levels in (semi-) constant speed driving. The understanding of the noise contributions of different connections of the suspension systems to the vehicle is essential in improvement of the isolation capabilities of the suspension- and body-structure. To identify these noise contributions, both the forces acting at the suspension-to-body connections points and the vibro-acoustic transfers from the connection points to the interior microphones are required. In this paper different approaches to identify the forces are compared for their applicability to road noise analysis. First step for the force identification is the full vehicle operational measurement in which target responses (interior noise) and indicator responses (accelerations or other) are measured.
Technical Paper

Correlation and Verification of a Tractor Cab Model Using Statistical Energy Analysis

2018-04-03
2018-01-0142
A model of a tractor cab was built using Statistical Energy Analysis (SEA) best practices. In this paper, it is shown how this model was correlated using p/Q transfer functions measured in the lab with a volume velocity source. After correlation, the model was excited using acoustic loads measured during tractor operation. It was found that the data predicted by the model is in good agreement with the data measured inside the cabin during this test. It was concluded that SEA can be used as an engineering tool to predict the behavior under many different conditions and can be used to guide the development process.
Technical Paper

Testing and Simulation of Anti-Flutter Foam and High Damping Foam in a Vehicle Roof Structure

2013-05-13
2013-01-1944
The excitation of structural modes of vehicle roofs due to structure-borne excitations from the road and powertrain can generate boom and noise issues inside the passenger cabin. The use of elastomeric foams between the roof bows and roof panel can provide significant damping to the roof and reduce the vibration. If computer-aided engineering (CAE) can be used to predict the effect of elastomeric foams accurately on vibration and noise, then it would be possible to optimize the properties and placement of foam materials on the roof to attenuate vibration. The properties of the different foam materials were characterized in laboratory tests and then applied to a flat test panel and a vehicle body-in-white. This paper presents the results of an investigation into the testing and CAE analysis of the vibration and radiated sound power of flat steel panels and the roof from the BIW of an SUV with anti-flutter foam and Terophon® high damping foam (HDF) materials.
Technical Paper

Passenger Vehicle Hybrid Hydraulic Powertrain Sound Quality Investigation

2013-05-13
2013-01-2004
The sound quality of a prototype series hydraulic hybrid passenger vehicle powertrain was analyzed. Different sound quality metrics were evaluated to determine which one correlated best with the subjective assessment of sound quality, and a desired sound quality target was developed. Next, the effect of the design of the hydraulic powertrain components on sound quality was analyzed. Two extreme options were analyzed: “stiff” systems with a hard drive shaft or short fluid hoses, and “soft” systems with a soft drive shaft or long fluid hoses. Experimental results from these systems are presented in the paper. Finally, design recommendations were made to achieve the best sound quality of the hybrid hydraulic powertrain, and therefore maximum customer satisfaction.
Technical Paper

A Practical Procedure to Predict AIS Inlet Noise Using CAE Simulation Tools

2013-04-08
2013-01-1004
The air induction system (AIS), which provides clean air to the engine for combustion, is very important for engine acoustics. A practical CAE procedure to predict AIS inlet noise is presented in this paper. GT-Power, a commercially available software program can be used to simulate the engine performance and predict air induction noise. The accuracy of GT-Power is dependent on many variables, such as: proper duct discretization size, proper number of flow splits to model the air box and the capturing of the correct resonator geometry for tuning frequency. Since GT-Power is based on a 1D assumption, several iterations need be performed to model the complex AIS components, such as, irregular shaped air box, resonator volume, porous ducts and perforated pipes. Because of this, the GT-Power AIS model needs to be correlated to test data using transmission loss data.
Technical Paper

Prediction of HVAC System Aero/Acoustic Noise Generation and Propagation using CFD

2013-04-08
2013-01-0856
With the advent of quieter powertrain and improved cabin acoustic sealing, there is an increased focus on noise generated in the HVAC unit and climate control ducting system. With improved insulation from exterior noise sources such as wind & road noise, HVAC noise is more perceptible by the occupants and is a key quality indicator for new generation vehicles. This has increased the use of simulations tools to predict HVAC noise during the virtual development phase of new vehicle programs. With packaging space being premium under the instrument panel, changes to address noise issues are expensive and often impractical. The current methodology includes the best practices in simulation accumulated from prior aero acoustics validation studies on fans, ducts, flaps and plenum volume discharge. The paper details the acoustic noise generation and propagation in the near field downstream of an automotive HVAC unit in conjunction with ducting system.
Technical Paper

Acoustic Simulation of Multilayered Noise Control Treatment with Porous Material

2018-04-03
2018-01-0144
Porous materials have been applied increasingly for absorbing noise energy and improving the acoustic performance. Different models have been proposed to predict the performance of these materials, and much progress has been achieved. However, most of the foregoing researches have been conducted on a single layer of porous material. In real application, porous materials are usually combined with other kinds of materials to compose a multilayered noise control treatment. This paper investigates the acoustic performance of such treatments with a combination of porous and non-porous media. Results from numerical simulation are compared to experimental measurements. Transfer matrix method is adopted to simulate the insertion loss and absorption associated with three samples of a noise control treatment product, which has two porous layers bonded by an impervious screen.
Technical Paper

Development of a Hybrid Powertrain Active Damping Control System via Sliding Mode Control Scheme

2013-04-08
2013-01-0486
This paper presents the design of a hybrid powertrain damping control algorithm using the sliding mode control (SMC) scheme. Motor control-based active damping control strategy is used to ensure smooth drive line operation and provide the driver with seamless driving experience. In the case of active damping control, motor and engine speeds are measured to monitor the driveline state, and corrective motor torques are generated to dampen out drive line vibrations. Drive lines are prone to internal vibration (engine, clutches and motors) as well as external disturbances caused by road inputs. As such, fast-response actuator-based damping control systems are desirable in a hybrid powertrain application, where a torque converter is generally not used. The most significant aspect of an active damping control algorithm is the error calculation, based on proper states information, and torque determination based on the adaptive control gain applied to the nonlinear system.
Technical Paper

Integrated Virtual Approach for Optimization of Vehicle Sensitivity to Brake Torque Variation

2013-04-08
2013-01-0596
Brake judder is a brake induced vibration that a vehicle driver experiences in the steering wheel or floor panel at highway speeds during vehicle deceleration. The primary cause of this disturbance phenomenon is the brake torque variation (BTV). Virtual CAE tools from both kinematics and compliance standpoints have been applied in analyzing sensitivities of the vehicle systems to BTV. This paper presents a recently developed analytical approach that identifies parameters of steering and suspension systems for achieving optimal settings that desensitize the vehicle response to BTV. The analytical steps of this integrated approach started with creating a lumped mass noise-vibration-harshness (NVH) control model and a separate multi-body dynamics (MBD) suspension model. Then, both models were linked to run in a sequence through optimization software so the results from the MBD model were used as quasi-static inputs to the lumped mass NVH model.
Technical Paper

Tonal Metrics in the Presence of Masking Noise and Correlation to Subjective Assessment

2014-04-01
2014-01-0892
As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment.
Technical Paper

Material Characterization of Multi-Layered Noise Control Treatments from Random-Incidence Transmission Loss

2019-06-05
2019-01-1575
Sound propagation through noise control treatment is governed by fluid, mechanical and geometric properties of the materials. The knowledge of material properties is important to improve the acoustical performance of the resulting noise control products. A method based on optimization together with genetic algorithm is used to estimate material properties of multi-layered treatments. Unlike previous inverse characterization approaches based on normal incidence performance metrics measured using standing wave impedance tubes, the current approach is based on random incidence performance metrics. Specially, the insertion loss ‘measured’ from two room transmission loss suite is utilized. To validate the applicability of the proposed method, numerically synthesized insertion loss computed from known material properties are used. In order to properly represent the ‘measured’ values, noise is added to the numerically synthesized insertion loss values.
Journal Article

A Pass-By Noise Prediction Method Based on Source-Path-Receiver Approach Combining Simulation and Test Data

2019-01-09
2019-26-0188
Optimizing noise control treatments in the early design phase is crucial to meet new strict regulations for exterior vehicle noise. Contribution analysis of the different sources to the exterior acoustic performance plays an important role in prioritizing design changes. A method to predict Pass-by noise performance of a car, based on source-path-receiver approach, combining data coming from simulation and experimental campaigns, is presented along with its validation. With this method the effect of trim and sound package on exterior noise can be predicted and optimized.
X