Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Development of Corrosion Testing Protocols for Magnesium Alloys and Magnesium-Intensive Subassemblies

2013-04-08
2013-01-0978
Corrosion tendency is one of the major inhibitors for increased use of magnesium alloys in automotive structural applications. Moreover, systematic or standardized methods for evaluation of both general and galvanic corrosion of magnesium alloys, either as individual components or eventually as entire subassemblies, remains elusive, and receives little attention from professional and standardization bodies. This work reports outcomes from an effort underway within the U.S. Automotive Materials Partnership - ‘USAMP’ (Chrysler, Ford and GM) directed toward enabling technologies and knowledge base for the design and fabrication of magnesium-intensive subassemblies intended for automotive “front end” applications. In particular, subassemblies consisting of three different grades of magnesium (die cast, sheet and extrusion) and receiving a typical corrosion protective coating were subjected to cyclic corrosion tests as employed by each OEM in the consortium.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Technical Paper

Integrating Manufacturing Pre-Stress in FEA Based Road Load Fatigue Analysis

2013-04-08
2013-01-1204
Most manufacturing and assembly processes like stamping, clamping, interference fits introduce a pre-stress condition in components or assemblies. Very often these stresses are high enough and alter the mean stress state resulting in significant effect on fatigue life performance and thus cannot be ignored. If the pre-stress is compressive, it will increase the allowable stress range and improve fatigue life performance; on the other hand if these stresses are tensile, they will decrease the allowable stress range resulting in a degradation of fatigue life. At times it becomes critical to effectively introduce the pre-stress condition in order to accurately represent the stress state in an FEA based durability simulation. Accounting for the pre-stress state in FEA based constant amplitude loading fatigue life simulation is relatively straight forward, but when it comes to random variable amplitude multi-channel loads simulation, the problem becomes more complicated.
Technical Paper

A New Measurement of Aluminum Alloy Edge Stretching Limit Based on Digital Image Correlation Method

2016-04-05
2016-01-0417
In Aluminum Alloy, AA, sheet metal forming, the through thickness cracking at the edge of cut out is one of the major fracture modes. In order to prevent the edge cracking in production forming process, practical edge stretch limit criteria are needed for virtual forming prediction and early stamping trial evaluations. This paper proposes new methods for determining the edge stretching limit of the sheet coupons, with and without pre-stretching, based on the Digital Image Correlation (DIC) technique. A numbers of sets of notch-shaped smaller coupons with three different pre-stretching conditions (near 5%, 10% and fractured) are cut from the prestretched large specimens. Then the notch-shaped smaller coupons are stretched by uniaxial tension up to through edge cracking observed. A dual-camera 3D-DIC system is utilized to measure both coupon face strain and thickness strain in the notch area at the same time.
X