Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

2010-04-12
2010-01-1011
This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Journal Article

What's Speed Got To Do With It?

2010-04-12
2010-01-0526
The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Journal Article

Modeling and Analysis of Powertrain NVH with Focus on Growl Noise

2013-05-13
2013-01-1875
Superior NVH performance is a key focus in the development of new powertrains. In recent years, computer simulations have gained an increasing role in the design, development, and optimization of powertrain NVH at component and system levels. This paper presents the results of a study carried out on a 4-cylinder in-line spark-ignition engine with focus on growl noise. Growl is a low frequency noise (300-700 Hz) which is primarily perceived at moderate engine speeds (2000-3000 rpm) and light to moderate throttle tip-ins. For this purpose, a coupled and fully flexible multi-body dynamics model of the powertrain was developed. Structural components were reduced using component mode synthesis and used to determine dynamics loads at various engine speeds and loading conditions. A comparative NVH assessment of various crankshaft designs, engine configurations, and in- cylinder gas pressures was carried out.
Journal Article

Alternative Simulation Methods for Assessing Aerodynamic Drag in Realistic Crosswind

2014-04-01
2014-01-0599
The focus of evaluating yaw characteristics in automotive aerodynamics has been primarily with regards to the effects of crosswind on vehicle handling. However, changes to drag that the vehicle experiences due to prevalent on-road crosswind can also be significant, even at low yaw angles. Using wind tunnel testing, it is possible to quickly determine the static yaw performance of the vehicle by rotating the vehicle on a turntable to different yaw angles during a single wind tunnel run. However, this kind of testing does not account for dynamic crosswind effects or non-uniform crosswind such as with natural on-road turbulence. Alternatively, numerical simulations using computational fluid dynamics (CFD) can be used to evaluate yaw performance. In this paper, Exa's PowerFLOW is used to examine two alternative methods of simulating aerodynamic performance in the presence of realistic on-road crosswind for the Tesla Model S sedan.
Journal Article

Insights into Rear Surface Contamination Using Simulation of Road Spray and Aerodynamics

2014-04-01
2014-01-0610
Contamination of vehicle rear surfaces is a significant issue for customers. Along with being unsightly, it can degrade the performance of rear camera systems and lighting, prematurely wear rear screens and wipers, and transfer soil to customers moving goods through the rear tailgate. Countermeasures, such as rear camera wash or automated deployment add expense and complexity for OEMs. This paper presents a rear surface contamination model for a fully detailed SUV based on the use of a highly-resolved time-accurate aerodynamic simulation realised through the use of a commercial Lattice-Boltzmann solver, combined with Lagrangian Particle Tracking to simulate droplet advection and surface water dynamics via a thin film model. Droplet break-up due to aerodynamic shear is included, along with splash and stripping from the surface film. The effect of two-way momentum coupling is included in a sub-set of simulations.
Journal Article

Performance and Sulfur Effect Evaluation of Tier 4 DOC+SCR Systems for Vanadia, Iron, and Copper SCR

2014-04-01
2014-01-1519
Non-road Tier 4 Final emissions standards offer opportunities for engines to be certified with DOC + SCR aftertreatment systems (ATS), where particulate matter (PM) emissions will be controlled by engine measures. These non-filter systems will not experience high thermal conditions common for filter regeneration and, therefore, will not have the secondary benefit of thermal events removing sulfur from the DOC and SCR aftertreatment. An experimental program was conducted on DOC + SCR systems in which the DOC was selected for the anticipated NO2 and sulfur management requirements of a fixed volume of 3 SCR types (vanadia, copper and iron). Each system was optimized to NOx conversion levels of 90%+ on NRTC cycles then exposed to accelerated sulfur poisoning and various cycles of increasing temperature after each poisoning to observe the performance recovery of the system. Specific sulfur management strategies are defined, depending on technology.
Journal Article

Options for Coupled Thermal-Electric Modeling of Battery Cells and Packs

2014-04-01
2014-01-1834
Integration of advanced battery systems into the next generation of hybrid and electric vehicles will require significant design, analysis, and test efforts. One major design issue is the thermal management of the battery pack. Analysis tools are being developed that can assist in the development of battery pack thermal design and system integration. However, the breadth of thermal design issues that must be addressed requires that there are a variety of analysis tools to address them efficiently and effectively. A set of battery modeling tools has been implemented in the thermal modeling software code PowerTHERM. These tools are coupled thermal-electric models of battery behavior during current charge and discharge. In this paper we describe the three models in terms of the physics they capture, and their input data requirements. We discuss where the capabilities and limitations of each model best align with the different issues needed to be addressed by analysis.
Journal Article

Investigation of Thermo-Acoustic Excitations in a Rijke Tube Geometry

2014-04-01
2014-01-1981
Flow generated acoustic sources are of significant import for automotive applications since perception of noise is a critical customer satisfaction issue. High temperature acoustic sources known as thermo-acoustics such as those occurring inside an exhaust system of a vehicle, an important subset of acoustic sources, is the subject of the investigation. In this article, we study a Rijke tube configuration that consists of a vertical and hollow cylindrical tube open at both ends where sound is generated by buoyancy driven flow as a result of a heated wire gauze placed in the bottom half of the tube. This configuration captures the essence of the thermo-acoustic phenomena and was investigated both numerically and experimentally and good agreement was observed between the two.
Journal Article

Aerodynamic Shape Optimization of an SUV in early Development Stage using a Response Surface Method

2014-09-30
2014-01-2445
In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes.
Journal Article

Evaluation of Non-Uniform Upstream Flow Effects on Vehicle Aerodynamics

2014-04-01
2014-01-0614
Historically vehicle aerodynamic development has focused on testing under idealised conditions; maintaining measurement repeatability and precision in the assessment of design changes. However, the on-road environment is far from ideal: natural wind is unsteady, roadside obstacles provide additional flow disturbance, as does the presence of other vehicles. On-road measurements indicate that turbulence with amplitudes up to 10% of vehicle speed and dominant length scales spanning typical vehicle sizes (1-10 m) occurs frequently. These non-uniform flow conditions may change vehicle aerodynamic behaviour by interfering with separated turbulent flow structures and increasing local turbulence levels. Incremental improvements made to drag and lift during vehicle development may also be affected by this non-ideal flow environment. On-road measurements show that the shape of the observed turbulence spectrum can be generalised, enabling the definition of representative wind conditions.
Journal Article

Design for Six Sigma (DFSS) for Optimization of Automotive Heat Exchanger and Underhood Air Temperature

2014-04-01
2014-01-0729
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
Journal Article

Development of Transient Thermal Models Based on Theoretical Analysis and Vehicle Test Data

2014-04-01
2014-01-0726
In this paper, thermal models are developed based on experimental test data, and the physics of thermal systems. If experimental data is available, the data can be fitted to mathematical models that represent the system response to changes in its input parameters. Therefore, empirical models which are based on test data are developed. The concept of time constant is presented and applied to development of transient models. Mathematical models for component temperature changes during transient vehicle driving conditions are also presented. Mathematical models for climate control system warm up and cool-down are also discussed. The results show the significance of adopting this concept in analysis of vehicle test data, and in development of analytical models. The developed models can be applied to simulate the system or component response to variety of changes in input parameters. As a result, significant testing and simulation time can be saved during the vehicle development process.
Journal Article

Spatial Phase-Shift Digital Shearography for Out-of-Plane Deformation Measurement

2014-04-01
2014-01-0824
Measuring deformation under dynamic loading is still a key problem in the automobile industry. The first spatial phase-shift shearography system for relative deformation measurement is reported. Traditional temporal phase-shift technique-based shearography systems are capable of measuring relative deformation by using a reference object. However, due to its low acquisition rate, the existing temporal phase-shift shearography system can be only used under static loading situations. This paper introduces a digital shearography system which utilizes the spatial phase-shift technique to obtain an extremely high acquisition rate. The newly developed spatial phase-shift shearography system uses a Michelson-Interferometer as the shearing device. A high power laser at 532nm wavelength is used as the light source. A one mega pixels high speed CCD camera is used to record the speckle pattern interference.
Journal Article

Optimization of a Porous Ducted Air Induction System Using Taguchi's Parameter Design Method

2014-04-01
2014-01-0887
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance.
Journal Article

Microstructural Contact Mechanics Finite Element Modeling Used to Study the Effect of Coating Induced Residual Stresses on Bearing Failure Mechanisms

2014-04-01
2014-01-1018
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
Journal Article

Thermal Map of an IC Engine via Conjugate Heat Transfer: Validation and Test Data Correlation

2014-04-01
2014-01-1180
Accurate numerical prediction of an engine thermal map at a wide range of engine operating conditions can help tune engine performance parameters at an early development stage. This study documents the correlation of an engine thermal simulation using the conjugate heat transfer (CHT) methodology with thermocouple data from an engine operating in a dynamometer and a vehicle drive cell. Three different operating conditions are matched with the simulation data. Temperatures predicted by simulation at specific sections, both at the intake and the exhaust sides of the engine are compared with the measured temperatures in the same location on the operating engine.
Journal Article

An Efficient Method to Calculate the Failure Rate of Dynamic Systems with Random Parameters Using the Total Probability Theorem

2015-04-14
2015-01-0425
Using the total probability theorem, we propose a method to calculate the failure rate of a linear vibratory system with random parameters excited by stationary Gaussian processes. The response of such a system is non-stationary because of the randomness of the input parameters. A space-filling design, such as optimal symmetric Latin hypercube sampling or maximin, is first used to sample the input parameter space. For each design point, the output process is stationary and Gaussian. We present two approaches to calculate the corresponding conditional probability of failure. A Kriging metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure and the failure rate of the dynamic system. The proposed method is demonstrated using a vibratory system.
Journal Article

Modeling, Analysis and Optimization of the Twist Beam Suspension System

2015-04-14
2015-01-0623
A twist beam rear suspension system is modeled, analyzed and optimized in this paper. An ADAMS model is established based on the REC (Rigid-Elastic Coupling) Theory, which is verified by FEM (Finite Element Method) approach, the effects of the geometric parameters on the twist beam suspension performance are investigated. In order to increase the calculation efficiency and improve the simulation accuracy, a neural network model and NSGA II (Non-dominated Sorting Genetic Algorithm II) are adopted to conduct a multi-objective optimization on a twist beam rear suspension system.
Journal Article

Consequences of Deep Cycling 24 Volt Battery Strings

2015-07-01
2015-01-9142
Deep charge and discharge cycling of 24 Volt battery strings composed of two 12 Volt VRLA batteries wired in series affects reliability and life expectancy. This is a matter of interest in vehicle power source applications. These cycles include those specific operational cases requiring the delivery of the full storage capacity during discharge. The concern here is related to applications where batteries serve as a primary power source and the energy content is an issue. It is a common practice for deep cycling a 24 volt battery string to simply add the specified limit voltages during charge and discharge for the individual 12 Volt batteries. In reality, the 12 Volt batteries have an inherent capacity variability and are not identical in their performance characteristics. The actual voltages of the individual 12 Volt batteries are not identical.
Journal Article

Efficient Global Surrogate Modeling Based on Multi-Layer Sampling

2018-04-03
2018-01-0616
Global surrogate modeling aims to build surrogate model with high accuracy in the whole design domain. A major challenge to achieve this objective is how to reduce the number of function evaluations to the original computer simulation model. To date, the most widely used approach for global surrogate modeling is the adaptive surrogate modeling method. It starts with an initial surrogate model, which is then refined adaptively using the mean square error (MSE) or maximizing the minimum distance criteria. It is observed that current methods may not be able to effectively construct a global surrogate model when the underlying black box function is highly nonlinear in only certain regions. A new surrogate modeling method which can allocate more training points in regions with high nonlinearity is needed to overcome this challenge. This article proposes an efficient global surrogate modeling method based on a multi-layer sampling scheme.
X