Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Journal Article

Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and Its Use for Analysis of Transient Operations

2014-10-13
2014-01-2546
Abundant supply of Natural Gas (NG) is U.S. and cost-advantage compared to diesel provides impetus for engineers to use alternative gaseous fuels in existing engines. Dual-fuel natural gas engines preserve diesel thermal efficiencies and reduce fuel cost without imposing consumer range anxiety. Increased complexity poses several challenges, including the transient response of an engine with direct injection of diesel fuel and injection of Compressed Natural Gas (CNG) upstream of the intake manifold. A 1-D simulation of a Cummins ISX heavy duty, dual-fuel, natural gas-diesel engine is developed in the GT-Power environment to study and improve transient response. The simulated Variable Geometry Turbine (VGT)behavior, intake and exhaust geometry, valve timings and injector models are validated through experimental results. A triple Wiebe combustion model is applied to characterize experimental combustion results for both diesel and dual-fuel operation.
Journal Article

Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback

2015-04-14
2015-01-0877
As engines are equipped with an increased number of control actuators to meet fuel economy targets, they become more difficult to control and calibrate. The additional complexity created by a larger number of control actuators motivates the use of physics-based control strategies to reduce calibration time and complexity. Combustion phasing, as one of the most important engine combustion metrics, has a significant influence on engine efficiency, emissions, vibration and durability. To realize physics-based engine combustion phasing control, an accurate prediction model is required. This research introduces physics-based control-oriented laminar flame speed and turbulence intensity models that can be used in a quasi-dimensional turbulent entrainment combustion model. The influence of laminar flame speed and turbulence intensity on predicted mass fraction burned (MFB) profile during combustion is analyzed.
Technical Paper

A Study on a Prognosis Algorithm for PEMFC Lifetime Prediction Based on Durability Tests

2010-04-12
2010-01-0852
Of the fuel cells being studied, the proton exchange membrane fuel cell (PEMFC) is viewed as the most promising for transportation. Yet until today, the commercialization of the PEMFC has not been widespread in spite of its large expectation. Poor long term performances or durability, and high production and maintenance costs account for the main reasons. For the final commercialization of fuel cell in transportation field, the durability issue must be addressed, while the costs should be further brought down. In the meantime, health-monitoring and prognosis techniques are of great significance in ensuring the normal operation of the fuel cell and preventing or predicting its likely abrupt and catastrophic failure. In this paper, an analytical formulation of a damage accumulation law for fuel cell is presented.
Technical Paper

Coordinated Electric Supercharging and Turbo-Generation for a Diesel Engine

2010-04-12
2010-01-1228
Exhaust gas turbo-charging helps exploit the improved fuel efficiency of downsized engines by increasing the possible power density from these engines. However, turbo-charged engines exhibit poor transient performance, especially when accelerating from low speeds. In addition, during low-load operating regimes, when the exhaust gas is diverted past the turbine with a waste-gate or pushed through restricted vanes in a variable geometry turbine, there are lost opportunities for recovering energy from the enthalpy of the exhaust gas. Similar limitations can also be identified with mechanical supercharging systems. This paper proposes an electrical supercharging and turbo-generation system that overcomes some of these limitations. The system decouples the activation of the air compression and exhaust-energy recovery functions using a dedicated electrical energy storage buffer. Its main attributes fast speed of response to load changes and flexibility of control.
Technical Paper

Effects of Cellular Shear Bands on Interaction between a Non-pneumatic Tire and Sand

2010-04-12
2010-01-0376
To facilitate the design of a non-pneumatic tire for NASA's new Moon mission, the authors used the Finite Element Method (FEM) to investigate the interaction between soil and non-pneumatic tire made of different cellular shear bands. Cellular shear bands, made of an aluminum alloy (AL7075-T6), are designed to have the same effective shear modulus of 6.5E+6 Pa, which is the shear modulus of an elastomer. The Lebanon sand of New Hampshire is used in the model. This sand has a complete set of material properties in the literature and Drucker-Prager/Cap plasticity constitutive law with hardening is employed to model the sand. The tires are treated as deformable bodies, and the authors used the penalty contact algorithm to model the tangential behavior of the contact. The friction between tire and sand is considered by using Coulomb's law. Numerical results show deformation of sand and tire.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Investigation of the Machining of Titanium Components for Lightweight Vehicles

2010-04-12
2010-01-0022
Due to titanium's excellent strength-to-weight ratio and high corrosion resistance, titanium and its alloys have great potential to reduce energy usage in vehicles through a reduction in vehicle mass. The mass of a road vehicle is directly related to its energy consumption through inertial requirements and tire rolling resistance losses. However, when considering the manufacture of titanium automotive components, the machinability is poor, thus increasing processing cost through a trade-off between extended cycle time (labor cost) or increased tool wear (tooling cost). This fact has classified titanium as a “difficult-to-machine” material and consequently, titanium has been traditionally used for application areas having a comparatively higher end product cost such as in aerospace applications, the automotive racing segment, etc., as opposed to the consumer automotive segment.
Technical Paper

Automotive Simulator Based Novice Driver Training with Assessment

2011-04-12
2011-01-1011
Motor vehicle crashes involving novice drivers are significantly higher than matured driver incidents as reported by the National Highway Traffic Safety Administration Fatality Analysis Reporting System (NHTSA-FARS). Researchers around the world and the United States are focused on how to decrease crashes for this driver demographic. Novice drivers usually complete driver education classes as a pre-requisite for full licensure to improve overall knowledge and safety. However, compiled statistics still indicate a need for more in-depth training after full licensure. An opportunity exists to supplement in-vehicle driving with focused learning modules using automotive simulators. In this paper, a training program for “Following Etiquette” and “Situational Awareness” was developed to introduce these key driving techniques and to complete a feasibility study using a driving simulator as the training tool.
Technical Paper

Thermal Optimization of the ECS on an Advanced Aircraft with an Emphasis on System Efficiency and Design Methodology

1997-06-18
971241
Two methods for analyzing and evaluating the environmental control system on an advanced aircraft as described in this paper include the conventional first law energy conservation technique and the second law entropy generation minimization technique. Simplified analytical models of the ECS are developed for each method and compared to determine the validity of using the latter to facilitate the design process in optimizing the overall system for a minimum gross takeoff weight (GTW). Preliminary results have illustrated the importance of taking into account system optimization based on system (or component) efficiency. For instance, even though different values were obtained for the rate of entropy generation, the second law analysis of a shell-in-tube heat exchanger led to an optimum tube diameter of 0.12 in (3.05 mm) when both R-12 and R-114 were used as the refrigerant in the vapor cycle.
Technical Paper

Development of a Simulation for Assessment of Ride Quality of Tractor Semi-Trailers

1993-11-01
932940
Providing acceptable ride quality of tractor semi-trailers is essential to their viability in the freight transport business. This paper describes the development of a design tool that may be used to investigate the vertical dynamic response and ride comfort of these vehicles. A 12 degrees-of-freedom (DOF) model of the vertical dynamic response was developed and simulated in MATLAB [1]. The model is analyzed in the frequency domain. The input to the model is a user-specified power spectral density (PSD) of the vertical road irregularities. Outputs include modal frequencies, damping ratios and mode shapes, frequency response functions, PSDs and root mean square (rms) vertical and longitudinal accelerations in 1/3 octave bands. The rms values are compared with the specifications for ride comfort cited in ISO 2631 [2].
Technical Paper

Simulation and Evaluation of Semi-Active Suspensions

1994-03-01
940864
A simulation of the vertical response of a nonlinear 1/4 car model consisting of a sprung and an unsprung mass was developed. It is being used for preliminary evaluation of various suspension configurations and control algorithms. Nonlinearities include hysteretic shock damping and switchable damping characteristics. Road inputs include discrete events such as bumps and potholes as well as randomly irregular roads having specified power spectral densities (PSDs). Fast Fourier transform data analysis procedures are used to process data from the simulation to obtain PSDs, rms values, and histograms of various response quantities. To aid in assessing ride comfort, the 1/3 octave band rms acceleration of the sprung mass is calculated and compared with specifications suggested by the International Standards Organization (ISO). Cross plots of the rms values of acceleration, suspension travel, and the force of the road on the tire are used to compare the performance of various suspensions.
Technical Paper

An Investigation of the Effects of Roll Control on Handling and Stability of Passenger Vehicles During Severe Lane Change Maneuvers

1995-02-01
950305
The control of body roll on passenger vehicles can be used as a tool for controlling the “weight shift” that occurs during maneuvering. Distribution of load to the tires will determine the ability of each tire to generate lateral forces required for the maneuver and thus will significantly affect handling. In this investigation, the effects on weight shift and hence, on handling, of total roll stiffness, front to rear roll stiffness distribution, total roll damping, and roll damping distribution were examined. These results were then used to guide the development and analysis of several roll control algorithms. The results of the investigation indicate that roll control can be effective in improving handling and stability. However, simulation of the control algorithms showed that the controllers must be specifically tuned for the vehicle in which they are to be used.
Technical Paper

An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines

2014-10-13
2014-01-2695
The recent advent of highly effective drilling and extraction technologies has decreased the price of natural gas and renewed interest in its use for transportation. Of particular interest is the conversion of dedicated diesel engines to operate on dual-fuel with natural gas injected into the intake manifold. Dual-fuel systems with natural gas injected into the intake manifold replace a significant portion of diesel fuel energy with natural gas (generally 50% or more by energy content), and produce lower operating costs than diesel-only operation. Diesel-natural gas engines have a high compression ratio and a homogeneous mixture of natural gas and air in the cylinder end gases. These conditions are very favorable for knock at high loads. In the present study, knock prediction concepts that utilize a single step Arrhenius function for diesel-natural gas dual-fuel engines are evaluated.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
Book

Biocomposites in Automotive Applications

2015-08-13
The automotive sector has taken a keen interest in lightweighting as new required performance standards for fuel economy come into place. This strategy includes parts consolidation, design optimization, and material substitution, with sustainable polymers playing a major role in reducing a vehicle’s weight. Sustainable polymers are largely biodegradable, biocompatible, and sourced from renewable plant and agricultural stocks. A facile way to enhance their properties, so they can indeed replace the ones made from fossil fuels, is by reinforcing them with fibers to make composites. Natural fibers are gaining more acceptance in the industry due to their renewable nature, low cost, low density, low energy consumption, high specific strength and stiffness, CO2 sequestration potential, biodegradability, and less wear imposed on machinery. Biocomposites then become a very feasible way to help address the fuel consumption challenge ahead of us.
X