Refine Your Search

Topic

Author

Search Results

Technical Paper

Driver Drowsiness Behavior Detection and Analysis Using Vision-Based Multimodal Features for Driving Safety

2020-04-14
2020-01-1211
Driving inattention caused by drowsiness has been a significant reason for vehicle crash accidents, and there is a critical need to augment driving safety by monitoring driver drowsiness behaviors. For real-time drowsy driving awareness, we propose a vision-based driver drowsiness monitoring system (DDMS) for driver drowsiness behavior recognition and analysis. First, an infrared camera is deployed in-vehicle to capture the driver’s facial and head information in naturalistic driving scenarios, in which the driver may or may not wear glasses or sunglasses. Second, we propose and design a multi-modal features representation approach based on facial landmarks, and head pose which is retrieved in a convolutional neural network (CNN) regression model. Finally, an extreme learning machine (ELM) model is proposed to fuse the facial landmark, recognition model and pose orientation for drowsiness detection. The DDMS gives promptly warning to the driver once a drowsiness event is detected.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Technical Paper

A Preliminary Method of Delivering Engineering Design Heuristics

2020-04-14
2020-01-0741
This paper argues the importance of engineering heuristics and introduces an educational data-driven tool to help novice engineers develop their engineering heuristics more effectively. The main objective in engineering practice is to identify opportunities for improvement and apply methods to effect change. Engineers do so by applying ‘how to’ knowledge to make decisions and take actions. This ‘how to’ knowledge is encoded in engineering heuristics. In this paper, we describe a tool that aims to provide heuristic knowledge to users by giving them insight into heuristics applied by experts in similar situations. A repository of automotive data is transformed into a tool with powerful search and data visualization functionalities. The tool can be used to educate novice automotive engineers alongside the current resource intensive practices of teaching engineering heuristics through social methods such as an apprenticeship.
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Journal Article

Vehicle Road Runoff and Return - Effect of Limited Steering Intervention

2011-04-12
2011-01-0583
Vehicle safety remains a significant concern for consumers, government agencies, and automotive manufacturers. One critical type of vehicle accident results from the right or left side tires leaving the road surface and then returning abruptly due to large steering wheel inputs (road runoff and return). A subset of runoff road crashes that involve a steep hard shoulder has been labeled shoulder induced accidents. In this paper, a limited authority real time steering controller has been developed to mitigate shoulder induced accidents. A Kalman Filter based tire cornering stiffness estimation technique has been coupled with a feedback controller and driver intention module to create a safer driving solution without excessive intervention. In numerical studies, lateral vehicle motion improvements of 30% were realized for steering intervention. Specifically, the vehicle crossed the centerline after 1.0 second in the baseline case versus 1.3 seconds with steering assistance at 60 kph.
Journal Article

A Virtual Driving Education Simulation System - Hardware and Software with Pilot Study

2013-04-08
2013-01-1407
Novice drivers are often ill-equipped to safely operate a motor vehicle due to their limited repertoire of skills and experiences. However, automotive simulation tools can be applied to better educate young drivers for a number of common driving scenarios. In this paper, the Clemson Automotive Training System (CATS) will be presented to educate and train novice drivers to safely operate four wheel passenger vehicles on paved roadways. A portable automotive simulator can be programmed to emulate a variety of high-crash rate scenarios and roadway geometries. Drivers receive instructions regarding proper driving techniques and behaviors with an opportunity to practice the given vehicle maneuver. An on-line evaluation methodology has been designed to analyze the drivers' capabilities at handling these roadway events. First, a pre-simulation questionnaire evaluates their basic understanding of everyday driving situations.
Technical Paper

Investigation of Rollover, Lateral Handling, and Obstacle Avoidance Maneuvers of Tactical Vehicles

2006-10-31
2006-01-3569
Current military operations in Iraq and Afghanistan are unique because the battlefield can be described as a non-linear, asymmetrical environment. Units operate in zones that are susceptible to enemy contact from any direction at any time. The response to these issues has been the addition of add-on armor to HMMWV's and other tactical vehicles. The retro-fitting of armor to these vehicles has resulted in many accidents due to rollover and instability. The goal of this paper is to determine possible causes of the instability and rollover of up-armored tactical vehicles and to develop simulation tools that can analyze the steady-state and transient dynamics of the vehicles. Models and simulations include a steady-state rollover scenario, analysis of understeer gradient, and a transient handling analysis that uses models of both a human driver and a vehicle to analyze vehicle response to an obstacle avoidance maneuver.
Technical Paper

Evaluating Drivers’ Preferences and Understanding of Powertrain and Advanced Driver Assistant Systems Symbols for Current and Future Vehicles

2020-04-14
2020-01-1203
With the dramatic increase in vehicle technology, the availability of a wide range of powertrains, and the development of advanced driver assistant systems (ADAS), instrument cluster interfaces have become more complex, increasing the demand on drivers. Understanding the needs and preferences of a diverse group of drivers is essential for the development of digital instrument cluster interfaces that improve driver’s understanding of critical information about the vehicle. This study investigated drivers’ understanding and preferences related to powertrain and ADAS symbols presented on instrument clusters. Participants answered questions that evaluated nine symbol’s comprehension, familiarity, and helpfulness. Then, participants were presented with information from the owner’s manual for each symbol and responded if the information changed their understanding of the symbol.
Technical Paper

Development of New Turbulence Models and Computational Methods for Automotive Aerodynamics and Heat Transfer

2008-12-02
2008-01-2999
This paper is a review of turbulence models and computational methods that have been produced at Clemson University's Advanced Computational Research Laboratory. The goal of the turbulence model development has been to create physics-based models that are economically feasible and can be used in a competitive environment, where turnaround time is a critical factor. Given this goal, all of the work has been focused on Reynolds-Averaged Navier-Stokes (RANS) simulations in the eddy-viscosity framework with the majority of the turbulence models having three transport equations in addition to mass, momentum, and energy. Several areas have been targeted for improvement in turbulence modeling for complex flows such as those found in motorsports aerodynamics: the effects of streamline curvature and rotation on the turbulence field, laminar-turbulent transition, and separated shear layer rollup and breakdown.
Technical Paper

Design of an Open-Loop Steering Robot Profile for Double Lane Change Maneuver Using Simulation

2010-04-12
2010-01-0096
This paper presents a methodology for designing a simple open-loop steering robot profile to simulate a double lane change maneuver for track testing of a heavy tractor/trailer combination vehicle. For track testing of vehicles in a lane change type of maneuver, a human driver is typically used with a desired path defined with visual cues such as traffic cones. Such tests have been shown to result in poor test repeatability due to natural variation in driver steering behavior. While a steering robot may be used to overcome this repeatability issue, such a robot typically implements open-loop maneuvers and cannot be guaranteed to cause the vehicle to accurately follow a pre-determined trajectory. This paper presents a method using offline simulation to design an open-loop steering maneuver resulting in a realistic approximation of a double lane change maneuver.
Technical Paper

A Modified Monte-Carlo Approach to Simulation-Based Vehicle Parameter Design with Multiple Performance Objectives and Multiple Scenarios

2002-03-04
2002-01-1186
Shorter development times in the automotive industry are leading to the increased use of computer simulation in the vehicle design cycle to pre-optimize vehicle concepts. The focus of the work presented in this study is vehicle dynamic performance in different driving maneuvers. More specifically this paper presents a methodology for simulation-based parameter design of vehicles for excellent performance in multiple maneuvers. The model used in the study consists of eight degrees-of-freedom and has been validated previously. The vehicle data used is for a commercially available vehicle. A number of different driving scenarios (maneuvers) based on ISO standards for transient dynamic behavior are implemented and performance indices are calculated for each individual maneuver considered. Vehicle performance is assessed based on the performance indices.
Technical Paper

Development of an Expert System for Race Car Driver & Chassis Diagnostics

2002-05-07
2002-01-1574
Race teams compete at a level where fractions of a second separate the finishers. Consequently, teams devote significant resources to gain a competitive edge. Limitations on track time and high track rental prices dictate efficiency in testing. Thus, proper use of data acquisition and computer aided engineering tools is essential. These tools can be used to quickly analyze test data and serve as the basis for recommendations for changes in chassis setup and driver technique. This project describes the further development of such a tool that can be used to analyze and diagnose the control inputs of a driver as well as diagnose the overall balance of the chassis (i.e., understeer and oversteer). This tool is an “expert system” (implemented in MATLAB) that provides an understanding of the effects of both chassis setup changes and driver steering, braking, and throttle control inputs on overall lap times.
Technical Paper

Testing a Formula SAE Racecar on a Seven-Poster Vehicle Dynamics Simulator

2002-12-02
2002-01-3309
Vehicle dynamics simulation is one of the newest and most valuable technologies being applied in the racing world today. Professional designers and race teams are investing heavily to test and improve the dynamics of their suspension systems through this new technology. This paper discusses the testing of one of Clemson University's most recent Formula SAE racecars on a seven-poster vehicle dynamics simulator; commonly known as a “shaker rig.” Testing of the current dampers using a shock dynamometer was conducted prior to testing and results are included for further support of conclusions. The body of the paper is a discussion of the setup and testing procedures involved with the dynamic simulator. The results obtained from the dynamic simulator tests are then analyzed in conjunction with the shock dynamometer results. Conclusions are formed from test results and methods for future improvements to be applied in Formula SAE racing are suggested.
Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Evaluation of Alternative Steering Devices with Adjustable Haptic Feedback for Semi-Autonomous and Autonomous Vehicles

2018-04-03
2018-01-0572
Emerging autonomous driving technologies, with emergency navigating capabilities, necessitates innovative vehicle steering methods for operators during unanticipated scenarios. A reconfigurable “plug and play” steering system paradigm enables lateral control from any seating position in the vehicle’s interior. When required, drivers may access a stowed steering input device, establish communications with the vehicle steering subsystem, and provide direct wheel commands. Accordingly, the provision of haptic steering cues and lane keeping assistance to navigate roadways will be helpful. In this study, various steering devices have been investigated which offer reconfigurability and haptic feedback to create a flexible driving environment. A joystick and a robotic arm that offer multiple degrees of freedom were compared to a conventional steering wheel.
Technical Paper

Understanding the Automotive Pedal Usage and Foot Movement Characteristics of Older Drivers

2018-04-03
2018-01-0495
This study was driven by the prevalence of older drivers’ overrepresentation in crashes caused by pedal application errors. Previous research has shown tasks prone to pedal errors, which include emergency braking, parking lot maneuvers and reaching out of the driver’s window. However, pedal usage characteristics of older drivers while performing on-road driving tasks are unknown. The objective of this research was to understand pedal usage characteristics of older drivers during on-road driving tasks in an instrumented vehicle. Twenty-six drivers over the age of 60 completed 10 stopping tasks as the baseline for stopping performance, a startle-braking task, two forward parking tasks and two reaching out of the vehicle tasks. Results for this instrumented vehicle study showed significantly positive correlations between stature and the percent of foot pivoting, and between shoe length and percent of foot pivoting in the baseline stopping tasks.
Technical Paper

Evaluation of an Automotive Simulator Based Driver Safety Training Program for Run-Off-the-Road and Recovery

2013-04-08
2013-01-1260
Despite the growing acceptance of driver education programs, there remains a class of unpredictable and dangerous vehicle situations for which very little training or education is offered. Included in this list is a condition called run-off-the-road (ROR) which occurs when the wheels of the vehicle leave the paved surface of the road and begin to travel on the lower friction surfaces of the shoulder or side of the road. Unsuccessful recovery from ROR contributes to an overwhelming percentage of motorized vehicle crash fatalities and injuries. Most present solutions involve roadway infrastructure management and driver assistance systems. While these solutions have contributed varying amounts of success to the ROR problem, they remain limited as they do not directly address the critical cause of ROR crashes which is driver performance errors.
Technical Paper

Assessment of a Safe Driving Program for Novice Operators

2013-04-08
2013-01-0441
A safe driver program has been established through a public-private partnership. This program targets novice drivers and uses a combination of classroom and in-vehicle training exercises to address critical driver errors known to lead to crashes. Students participate in four modules: braking to learn proper stopping technique, obstacle avoidance / reaction time to facilitate proper lane selection and collision avoidance, tailgating to learn about following distances, and loss of control to react appropriately when a vehicle is about to become laterally unstable. Knowledge pre and posttests are also administered at the start and end of the program. Students' in-vehicle driving performance are evaluated by instructors as well as recorded by onboard data acquisition units. The data has been evaluated with objective and subjective grading rubrics. The 70 participants in three classes used as a case study achieved an average skill score of 83.93/100.
Technical Paper

A Smart Jersey Highway Barrier with Portal for Small Animal Passage and Driver Alert

2013-04-08
2013-01-0620
Barriers are commonly used on roadways to separate and to protect against vehicles traveling in opposing directions from possible head-on collisions. However, these barriers may interfere with wildlife passage such that animals become trapped on the road. Typically, small animals cannot find safe passage across all traffic lanes due to the presence of solid barriers and eventually die after being hit by a vehicle. The occurrence of animal-to-vehicle collisions also presents a dangerous scenario for motorists as a driver may intuitively swerve to avoid hitting the animal. In this paper, a redesigned Jersey style barrier, named the Clemson smart portal, will be presented and discussed. This roadway barrier features a portal for small animal travel, along with a mechatronic-based warning system to notify drivers of animal passage.
X