Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Journal Article

Designing a Production-Ready Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Door

2021-04-06
2021-01-0365
Vehicle lightweighting has been a constant theme of research at numerous Original Equipment Manufacturers (OEM’s) as it provides one of the best opportunities for improving fuel efficiency. In this regard, the Department of Energy (DOE) Vehicle Technology Office set a challenge to lightweight a fully assembled driver’s side front door by at least 42.5% with the cost constraint of a maximum $5 increase for every pound saved. A baseline door of an OEM’s 2014 mid-size SUV was selected, and an integrated design, analysis, and optimization approach was implemented to meet this goal. The ultra-lightweight door design had to meet or exceed the fit & function and mechanical performance (static and dynamic) of the baseline door while being suitable for mass production. The design strategy involved parts consolidation, and multi-material distribution to enable mass reduction without compromising the fit and functional requirements.
X