Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Journal Article

Hydrogen Embrittlement of Commercially Produced Advanced High Strength Sheet Steels

2010-04-12
2010-01-0447
The susceptibility of Advanced High Strength Steels (AHSS) to hydrogen embrittlement (HE) was evaluated on selected high strength sheet steels (DP 600, TRIP 780, TRIP 980, TWIP-Al, TWIP, and Martensitic M220) and the results were compared to data on a lower strength (300 MPa tensile strength) low carbon steel. Tensile samples were cathodically charged and then immediately tensile tested to failure to analyze the mechanical properties of the as-charged steel. The effects of hydrogen on deformation and fracture behavior were evaluated through analysis of tensile properties, necking geometry, and SEM images of fracture surfaces and metallographic samples of deformed tensile specimens. The two fully austenitic TWIP steels were resistant to hydrogen effects in the laboratory charged tensile samples.
Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Journal Article

Effects of Chemical Composition, Heat Treatment, and Microstructure in Splittable Forged Steel Connecting Rods

2015-04-14
2015-01-0522
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy. Mechanical properties were determined by standard tensile tests, high strain rate notched tensile tests, and Charpy V-notch impact tests to assess “splittability”.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
Journal Article

IIoT-Enabled Production System for Composite Intensive Vehicle Manufacturing

2017-03-28
2017-01-0290
The advancements in automation, big data computing and high bandwidth networking has expedited the realization of Industrial Internet of Things (IIoT). IIoT has made inroads into many sectors including automotive, semiconductors, electronics, etc. Particularly, it has created numerous opportunities in the automotive manufacturing sector to realize the new aura of platform concepts such as smart material flow control. This paper provides a thought provoking application of IIoT in automotive composites body shop. By creating a digital twin for every physical part, we no longer need to adhere to the conventional manufacturing processes and layouts, thus opening up new opportunities in terms of equipment and space utilization. The century-old philosophy of the assembly line might not be the best layout for vehicle manufacturing, thus proposing a novel assembly grid layout inspired from a colony of ants working to accomplish a common goal.
Technical Paper

A Finite Element Design Study and Performance Evaluation of an Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Vehicle Door Assembly

2020-04-14
2020-01-0203
The ever-growing concern to reduce the impact of transportation systems on environment has pushed automotive industry towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of automobile components has proven broadly effective. A substantial effort is devoted to lightweighting body-in-white which contributes ~35% of total weight of vehicle. Closure systems, however, have been often overlooked. Closure systems are extremely important as they account for ~ 50% of structural mass and have a very diverse range of requirements, including crash safety, durability, strength, fit, finish, NVH, and weather sealing. To this end, a carbon fiber-reinforced thermoplastic composite door is being designed for an OEM’s mid-size SUV, that enables 42.5% weight reduction. In this work, several novel composite door assembly designs were developed by using an integrated design, analysis and optimization approach.
Journal Article

Numerical Investigation of Phase Change Materials for Thermal

2009-04-20
2009-01-0171
Phase change materials (PCMs) are extensively used in many engineering areas for thermal management purposes. This paper investigated the application of PCMs for vehicular systems, especially for the thermal protection of vehicle lighting systems based on light emitting diodes (LEDs). Lighting systems based on LEDs offer many advantages, however, also pose a smaller margin of error for thermal management. This paper analyzed the combined use of PCMs with metal foam for cooling systems. The cooling performance was studied numerically under different porosity values of the metal foam, and different boundary conditions. The cooling performance was also compared to a solid metal sink system (SMS) and was found to offer several distinct cooling characteristics.
Journal Article

Characterization of Advanced High Strength Steel Sheets in View of the Numerical Prediction of Sidewall Curl

2013-01-21
2012-01-2326
In this study, a procedure for characterizing advanced high strength steel sheets is presented in view of determining the material parameters for constitutive models that can be used for accurate prediction of springback and sidewall curl. The mechanical properties of DP980 and TRIP780 sheets were obtained experimentally, and their cyclic tension-compression behaviour was modeled with the Chaboche nonlinear kinematic hardening model and the Yoshida-Uemori two-surface plasticity model that are implemented in LS-DYNA. The unloading moduli were determined from monotonic tension tests at various prestrain levels. An inverse approach based on linear and quadratic response surfaces created by Sequential Strategy with Domain Reduction (SRSM) methodology using LS-OPT software was used and investigated to identify specific material parameters in each constitutive model.
Technical Paper

Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems

2020-04-14
2020-01-1303
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

Influence of Coating Microstructure on the Fatigue Properties of Zinc Coated Sheet Steels

1998-02-23
980955
The influence of coatings on fatigue behavior has been examined for the following commercially produced sheet steels: uncoated titanium stabilized interstitial-free (IF); electrogalvanized titanium stabilized IF; hot-dip galvanized aluminum killed, drawing quality (AKDQ); and galvannealed AKDQ. Fully reversed bending fatigue tests were conducted at ambient temperature on Krouse-type flexural fatigue machines. A dependence of crack development was observed and correlated to the microstructure and properties of the different coatings. Furthermore, a functional design relationship for each material was determined through stress-life analysis. The experimentally determined fatigue properties were compared to conventional estimates based on tensile properties which ignore coating effects. The results of this work suggest that ductile coatings may enhance fatigue resistance, while brittle coatings may reduce fatigue life.
Technical Paper

The Fatigue Performance of High Temperature Vacuum Carburized Nb Modified 8620 Steel

2007-04-16
2007-01-1007
The bending fatigue performance of high temperature (1050 °C) vacuum carburized Nb modified 8620 steel, with niobium additions of 0.02, 0.06 and 0.1 wt pct, was evaluated utilizing a modified Brugger specimen geometry. Samples were heated at two different rates (20 and 114 °C min-1) to the carburizing temperature resulting in different prior austenite grain structures that depended on the specific Nb addition and heating rate employed. At the lower heating rate, uniform fine grained prior austenite grain structures developed in the 0.06 and 0.1 Nb steels while a duplex grain structure with the presence of large (>200 μm grains) developed in the 0.02 Nb steel. At the higher heating rate the propensity for abnormal grain growth was highest in the 0.02 Nb steel and complete suppression of abnormal grain growth was achieved only with the 0.1 Nb steel.
Technical Paper

Investigation of S-N Test Data Scatter of Carburized 4320 Steel

2007-04-16
2007-01-1006
A series of bending fatigue tests were conducted and S-N data were obtained for two groups of 4320 steel samples: (1) carburized, quenched and tempered, (2) carburized, quenched, tempered and shot peened. Shot peening improved the fatigue life and endurance limit. The S-N data exhibited large scatter, especially for carburized samples and at the high cycle life regime. Sample characterization work was performed and scatter bands were established for residual stress distributions, in addition to fracture and fatigue properties for 4320 steel. Moreover, a fatigue life analysis was performed using fracture mechanics and strain life fatigue theories. Scatter in S-N curves was established computationally by using the lower bound and upper bound in materials properties, residual stress and IGO depth in the input data. The results for fatigue life analysis, using either computational fracture mechanics or strain life theory, agreed reasonably well with the test data.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
Technical Paper

Sheet Thinning during Plane-Strain Bending

2009-04-20
2009-01-1394
Knowledge of the net thinning strain that occurs in a sheet as it is bent over a single radius is an important component in understanding sheet metal formability. The present study extends the initial work of Swift on thinning during plane-strain bending to sheet steels with power law stress-strain behavior and with the inclusion of friction. The experimental data come from studies on the enhanced forming limit curve on DQSK steel and analysis of the curl behavior of 590R and DP600 steels. Results for single radius bending from these studies are used in the present investigation. It has been found that the amount of net thinning strain depends on back tension, initial plane-strain yield strength, and the maximum true bending strain calculated for the neutral plane at the mid-thickness of the sheet.
Technical Paper

Predicting the Radius of a Sheet Bent Around Drawbeads

2009-04-20
2009-01-1395
Drawbeads in production stamping dies often have insufficient penetration of the male bead into the female cavity. With insufficient penetration, the actual bending radii of the sheet metal are larger than the geometrical radii of the drawbead. The actual bending radii in the sheet directly affect the force that restrains sheet movement. To predict the restraining stress due to a drawbead, it is necessary to know the actual bending radii in the sheet as it passes though the drawbead. Data from a previous study are used to develop empirical regression equations for predicting measured radii of the sheet that is bent around the radii in a drawbead. A physical model for the evolution of the sheet radii as the drawbead closes is proposed. This model is consistent with the empirical equations and the mechanics of the sheet bending process.
Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Design of a Scaled Off-Vehicle Wheel Testing Device for Textile Tread Wear

2009-04-20
2009-01-0562
This paper describes the development of test equipment for determining the wear viability of various lunar wheel tread materials with service lives of up to ten years and 10,000 km. The problem is defined, and concepts are proposed, evaluated, and selected. An abrasive turntable is chosen for simplicity and accuracy of modeling the original wheel configuration. Additionally, the limitations of the test are identified, such as the sensitivity to off-vertical loading, and future work is projected in order to more effectively continue testing. Finally, this paper presents the challenges of collaborative research effort between an undergraduate research team and industry, with government lab representatives as customers
X