Refine Your Search

Topic

Search Results

Technical Paper

Experimental Results on the Effect of Piston Surface Roughness and Porosity on Diesel Engine Combustion

1996-02-01
960036
Measurements have been made to determine the effect of piston crown surface properties on combustion. Back-to-back engine tests were conducted to compare surface modified pistons to a production piston. Each modified piston was found to prolong combustion duration. Porous coatings and a non porous, roughened piston were observed to increase fuel consumption. Increase in fuel consumption was determined to be the result of increased heat release duration. The data show surface roughness alone affects the duration of heat release. The shift in magnitude of the centroid of heat release was similar to the shift observed in insulated engine experiments.
Technical Paper

Cavitation Intensity Measurements for Internal Combustion Engines

1996-02-01
960884
Recent engine design trends towards increasing power, reducing weight, advancing of injection timing and increasing of injection rate and pressure could result in increased incidence of liner pitting. Liner pitting due to coolant cavitation is a complex function of many engine design parameters and operating conditions as described in reference [1]*. Traditionally, liner cavitation problems were not detected early in the development cycle. Traditional liner vibration and coolant pressure measurements in conjunction with a numerous amount of expensive engine endurance tests were then needed to resolve cavitation problems. A method newly developed by the author and described in reference [2] for cavitation intensity measurements was successfully utilized to map out engine operating condition and develop limit curves. This method could also be applied in a non intrusive fashion.
Technical Paper

Real Time Captivation Detection Method

1996-02-01
960878
Cavitation corrosion is a very complex phenomenon that is governed by a formidable amount of factors and parameters. The phenomenon is a multi-disciplinary one which involves several aspects of physical sciences and engineering. This process is a slow progressive phenomenon with its detrimental effects being felt after severe damage has already occurred. A real time detection method for the severity of fluid cavitation and bubble collapse is described. The results are correlated to dynamic instantaneous pressure fluctuation measurements. The method is fast, reliable, and less restrictive of the sensing location. It has been tested and verified through a specially designed cavitation test rig and instrumentation setup. The method can be used for cavitation studies on ultrasonic bench rig tests and for cavitation measurements on running engines. The method was used to shed some light on characteristic cavitation differences between water and glycol which is used in engine coolants.
Technical Paper

A Powertrain Simulation for Engine Control System Development

1996-10-01
962171
A dynamic simulation of a school bus powertrain has been constructed for the purpose of assisting in the development of engine control strategies. With some extensions, this model can also be used as a first approximation to support the development of transmission shift control strategies, predict vehicle performance and drivability as well as estimate transient loads on the powertrain components. The simulation was constructed using the Matlab* computing environment along with the Simulink* toolbox, a package for the graphical development of dynamic simulation models. The vehicle model was validated against test data measured in the target vehicle powered by a natural gas engine to ensure that the simulation model yielded sensible predictions of the dynamic powertrain behavior. Equipped with a validated model, the control engineer can now use the simulation tool to assist in algorithm development. Sample applications are illustrated.
Technical Paper

Comparison of Measured and Theoretical Inter-Ring Gas Pressure on a Diesel Engine

1996-10-01
961909
Inter-ring gas pressure and piston ring motion are considered important for the control of oil consumption, particulate emissions, and reduced friction. For this reason, inter-ring gas pressure was measured on a diesel engine. Two different ring pack configurations were tested (positive and negative twist second rings). A significant difference in measured inter-ring pressure was observed. The measurements were compared to the predictions of a cylinder kit model with favorable results. Predictions showed that the observed difference between measured inter-ring pressures is caused by a significant difference in ring motion. The reasons for these differences are explained in this paper.
Technical Paper

Effect of Fuel Composition and Altitude on Regulated Emissions from a Lean-Burn, Closed Loop Controlled Natural Gas Engine

1997-05-01
971707
Natural gas presents several challenges to engine manufacturers for use as a heavy-duty, lean burn engine fuel. This is because natural gas can vary in composition and the variation is large enough to produce significant changes in the stoichiometry of the fuel and its octane number. Similarly, operation at high altitude can present challenges. The most significant effect of altitude is lower barometric pressure, typically 630 mm Hg at 1600 m compared to a sea level value of 760 mm. This can lower turbocharger boost at low speeds leading to mixtures richer than desired. The purpose of this test program was to determine the effect of natural gas composition and altitude on regulated emissions and performance of a Cummins B5.9G engine. The engine is a lean-burn, closed loop control, spark ignited, dedicated natural gas engine. For fuel composition testing the engine was operating at approximately 1600 m (5,280 ft) above sea level.
Technical Paper

Vechicle Testing of Cummins Turbocompound Diesel Engine

1981-02-01
810073
Two turbocompound diesel engines were assembled and dynamometer tested in preparation for vehicle tests. Both engines met the 1980 California gaseous emission requirement and achieved a minimum BSFC of .313 lb/bhp-hr and a BSFC at rated conditions of .323 lb/bhp-hr. These engines were then installed in Class VIII heavy-duty vehicles to determine the fuel consumption and performance characteristics. Fuel consumption testing showed a 14.8% improvement for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved drive-ability, improved gradeability, and moderately increased engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.
Technical Paper

A Preliminary Model for the Formation of Nitric Oxide in Direct Injection Diesel Engines and Its Application in Parametric Studies

1973-02-01
730083
A semiempirical, mathematical model describing the formation of nitric oxide in direct-injection diesel engines is derived. The model is used in conjunction with injection and thermodynamic cycle simulation programs. This approach enables prediction of nitric oxide emissions from design dimensions and operating parameters only, without the use of experimental data. Predicted results are compared with experiments for typical naturally aspirated and turbocharged engines. The accuracy of prediction is very good except under light-load naturally aspirated conditions. The model is used in an extensive parametric study, together with experimental verification. The agreement between prediction and experiments is excellent, except under conditions of excessive smoke or of high swirl.
Technical Paper

Simulation of The Cummins Diesel Injection System

1971-02-01
710570
Analog and digital simulations of the Cummins unit diesel injector have been developed. The mathematical models are derived and the computer results compared with experimental data. The simulations are used to investigate critical aspects of injector behavior.
Technical Paper

Performance and Regeneration Characteristics of a Cellular Ceramic Diesel Particulate Trap

1982-02-01
820272
Fundamental aspects of performance and regeneration of a porous ceramic particulate trap are described. Dimensionless correlations are given for pressure drop vs. flow conditions for clean and loaded traps. An empirical relationship between estimated particulate deposits and a loading parameter that distinguishes pressure drop changes due to flow variations from particulate accumulation is presented. Results indicate that trapping efficiencies exceed 90% under most conditions and pressure drop doubles when particulate accumulation occupies only 5% of the available void volume. Regeneration was achieved primarily by throttling the engine intake air. For various combinations of initial loading level, trap inlet temperature and oxygen concentration, it was found that regeneration rate peaked after 45 seconds from initiation.
Technical Paper

Tribological Investigations for an Insulated Diesel Engine

1983-02-01
830319
A Minimum Cooled Engine (MCE) has been successfully run for 250 hours at rated condition of 298 kW and 1900 rpm. This engine was all metallic without any coolant in the block and lower part of the heads. Ring/liner/lubricant system and thermal loading on the liner at top ring reversal (TRR) as well as on the piston are presented and discussed. Ring/liner wear is given as well as oil consumption and blow-by data during the endurance run. Another engine build with a different top ring coating and several lubricants suggested that a 1500 hours endurance run of MCE is achievable. Rig test data for screening ring materials and synthetic lubricants necessary for a successful operation of a so-called Adiabatic Engine with the ring/ceramic liner (SiN) interface temperature up to 650°C are presented and discussed.
Technical Paper

Cummins K-Series Engines

1974-02-01
740036
New heavy-duty diesel engines of 6-, 8-, 12-, and 16-cyl rated 75 hp/cyl turbocharged and 100 hp/cyl turbocharged and aftercooled are being developed. Design and development objectives include maximizing engine durability/reliability and use of common parts in all engine models. Fuel consumption, smoke, exhaust gas emissions, and engine noise equal or better than the best current engines within engine configurations readily adaptable to current automotive and construction equipment are also prime considerations. Initial models of the engine series meet the design and development objectives.
Technical Paper

Modeling of Transient Evaporating Spray Mixing Processes-Effect of Injection Characteristics

1984-02-01
840226
Some results of a systematic numerical study of the effects of injection characteristics on the transient evaporating spray mixing process in a diesel like environment are presented. The study uses an existing two-dimensional stochastic thick spray model. It was found that, for a fixed injection quantity, changes in the nozzle hole number, nozzle hole size, and injection duration changed significantly the evaporation and mixing processes of a transient evaporating spray. In particular, It is found that, for a fixed nozzle geometry, reduced injection duration is most effective in increasing the mixing rate. The results also show that the injection rate shape greatly influences the mixing process of a transient spray, especially during the injection period. After the end of injection, the global effect of injection rate shape can be characterized by the mass averaged injection pressure alone. The higher the mass averaged injection pressure, the faster the mixing rate.
Technical Paper

A Transient Spray Mixing Model for Diesel Combustion

1976-02-01
760128
A transient spray mixing model forming the basis of heterogeneous combustion in direct injection diesel engines is described. Experimental results of transient fuel sprays in a high pressure, high temperature chamber form the basis of spray growth equations. Use of similarity of concentration profile across the spray in conjunction with spray geometry and mass conservation yields a complete description of spatial and temporal fuel-air distribution. Fuel preparation and air entrainment rates are calculated from the history of fuel-air distribution. Progressive evolution of combustion zones is determined by the fuel-air mixing process. Energy conservation and chemical kinetics calculations in each zone yield cylinder pressure and local nitric oxide concentration. The role of fuel-air mixing in diesel combustion is discussed. The model results are compared with experimental data.
Technical Paper

Reduced Durability due to a Friction Modifier in Heavy Duty Diesel Lubricants

1985-04-01
851260
RAPID CORROSIVE WEAR OF COPPER ALLOYS caused by a friction reducing additive was encountered in field tests of experimental lubricants. This oil soluble molybdenum, sulphur, and phosphorous containing additive subsequently was used in several commercial heavy duty diesel lubricants although the additive manufacturer did not recommend it for such applications. Numerous engine failures occurred due to the aggressiveness of this additive toward copper. Standard laboratory engine test methods or standard bench test methods did not predict the severe field problem. A new laboratory engine test method has been shown to duplicate the field failures. Bench test methods to duplicate the field failures are discussed. The mode of failure is shown and described.
Technical Paper

An Assessment of Turbocharging Systems for Diesel Engines from First and Second Law Perspectives

1988-02-01
880598
A number of turbocharging systems have been proposed for improving the drivability of diesel engines for heavy duty trucks. The systems studied here included resonant intake, wastegate, and variable geometry turbocharging. By imposing a fixed power, torque rise, and engine speed range, it was possible to evaluate the fuel economy impact of each approach. First Law and Second Law balances are included to illustrate the differences in the systems. It was found that variable geometry turbocharging provided the best fuel economy.
Technical Paper

The Effect of Raising Specific Output of a Highly Rated DI Diesel Truck Engine on its Performance and Emissions

1989-02-01
890263
A study was undertaken to establish what happens to engine emissions, and to turbocharger and injection pressure requirements, as the specific output is raised. For any given engine package, increasing specific output increases injection pressures while reducing air/fuel ratios. Thus, if the highly rated engine must satisfy the same design constraints, then raising the engine operating torque by only 10% resulted in more than 30% increase in total particulates! However, the same emission levels may be maintained if increases in specific output are accompanied by changes to engine design so as to maintain the air-fuel mixing parameters, specifically air/fuel ratio and injection pressures, throughout the entire engine operating conditions.
Technical Paper

Combustion Chamber Insulation Effect on the Performance of a Low Heat Rejection Cummins V-903 Engine

1986-03-01
860317
Cummins Engine Company is developing a low heat rejection 450 kW engine under contract for the US Army Tank & Automotive Command. This paper discusses progress made toward achieving the program goals of 6.6 kcal/kW-min brake specific heat rejection and 200 g/kW-hr brake specific fuel consumption. Methodology for measuring heat rejection on a low heat rejection engine is presented. Design improvements of the base engine are discussed along with their effect on improving fuel consumption. Performance test data is assessed in terms of the first law energy balance and cooling load distribution. The heat rejection data provides insights on the performance of insulating components and two cooling system designs. Diesel cycle simulations are compared to the test data and are used to predict the effect of ceramic insulation on engine heat rejection.
Technical Paper

The Use of Flow Visualization and Computational Fluid Mechanics in Cylinder Head Cooling Jacket Development

1989-09-01
891897
The complementary use of flow visualization and computational fluid mechanics has been demonstrated for the development of cylinder head cooling jackets. Flow visualization was shown to allow the detailed characterization of fluid flow through the complex geometry of a cooling jacket. The use of high speed photography further aided in visualizing the details of the flow, and was used to quantify local fluid velocities. Computationally modeling portions of the cooling jacket allowed the extension of the flow visualization results to the fluid conditions of an operating engine. The computational model also provided an effective tool to assess the impact of modifications to the cooling jackets, without the complexity of modifying the flow visualization test rig for each iteration.
X