Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Journal Article

Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S. Greenhouse Gas Emissions

2013-09-08
2013-24-0094
The world-wide commercial vehicle industry is faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. This work focuses on the new U.S. regulation of greenhouse gas (GHG) emissions from commercial vehicles and diesel engines and the most likely technologies to meet future anticipated standards while improving transportation freight efficiency. In the U.S., EPA and NHTSA have issued a joint proposed GHG rule that sets limits for CO2 and other GHGs from pick-up trucks and vans, vocational vehicles, semi-tractors, and heavy duty diesel engines. This paper discusses and compares different technologies to meet GHG regulations for diesel engines based on considerations of cost, complexity, real-world fidelity, and environmental benefit.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Journal Article

N2O Formation and Mitigation in Diesel Aftertreatment Systems

2012-04-16
2012-01-1085
The high global warming potential of nitrous oxide (N₂O) led to its recent inclusion in the list of regulated pollutants under the emerging greenhouse gas regulations. While N₂O can be present in small quantities among the combustion products, it can also be generated as a minor byproduct in various types of aftertreatment systems. In this work, a systematic review of sources of N₂O is presented, along with the potential mechanisms of formation in a typical selective-catalytic-reduction-based diesel exhaust aftertreatment system. It is demonstrated that diesel oxidation catalysts (DOC), selective catalytic reduction (SCR) catalyst, and ammonia slip catalyst (ASC) can all potentially contribute to N₂O formation, depending on the catalyst material and exhaust gas conditions, as well as aftertreatment operation strategies. Furthermore, catalysts used in SCR aftertreatment system are also shown to decompose and/or reduce N₂O to N₂ under select conditions.
Journal Article

Powertrain Cycle for Emission Certification

2012-09-24
2012-01-2059
In August of 2011, the US Environmental Protection Agency issued new Green House Gas (GHG) emissions regulations for heavy duty vehicles. These regulations included new procedures for the evaluation of hybrid powertrains and vehicles. One of the hybrid options allows for the evaluation of an engine plus a hybrid transmission (a powertrain). For this type of testing, EPA has proposed simulating a vehicle following the hybrid vehicle test procedures, including the use of the vehicle cycles and the A to B comparison testing - as required for the full vehicle evaluation option. This paper proposes an alternative approach by defining a powertrain cycle. The powertrain cycle is based on the heavy duty engine emissions cycle - the transient FTP cycle. Simulation and test results are presented showing similar performance over the engine and vehicle cycles. This approach offers several advantages as compared to the procedure described in EPA's GHG rule.
Technical Paper

Cummins Vehicle Mission Simulation Tool: Software Architecture and Applications

2010-10-05
2010-01-1997
This paper presents the business purpose, software architecture, technology integration, and applications of the Cummins Vehicle Mission Simulation (VMS) software. VMS is the value-based analysis tool used by the marketing, sales, and product engineering functions to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. VMS leverages the best of software architecture practices and proven technologies available today. It consists of a close integration of MATLAB and Simulink with Java, XML, and JDBC technologies. This Windows compatible application software uses stand-alone mathematical models compiled using Real Time Workshop. A built-in MySQL database contains product data for engines, driveline components, vehicles, and topographic routes. This paper outlines the database governance model that facilitates effective management, control, and distribution of engine and vehicle data across the enterprise.
Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
Technical Paper

Diesel Engine Noise Source Visualization with Wideband Acoustical Holography

2017-06-05
2017-01-1874
Wideband Acoustical Holography (WBH), which is a monopole-based, equivalent source procedure (J. Hald, “Wideband Acoustical Holography,” INTER-NOISE 2014), has proven to offer accurate noise source visualization results in experiments with a simple noise source: e.g., a loudspeaker (T. Shi, Y. Liu, J.S. Bolton, “The Use of Wideband Holography for Noise Source Visualization”, NOISE-CON 2016). From a previous study, it was found that the advantage of this procedure is the ability to optimize the solution in the case of an under-determined system: i.e., when the number of measurements is much smaller than the number of parameters that must be estimated in the model. In the present work, a diesel engine noise source was measured by using one set of measurements from a thirty-five channel combo-array placed in front of the engine.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Technical Paper

Future Challenges for Engine Manufacturers in View of Future Emissions Legislation

2017-05-10
2017-01-1923
Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Drive by Noise System and Corresponding Facility Upgrades for Test Efficiency, Data Quality and Customer Satisfaction

2011-05-17
2011-01-1611
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
Technical Paper

Alternate Approach: Acoustics and Cooling Performance Management

2018-04-03
2018-01-0084
Development of quick and efficient numerical tools is key to the design of industrial machines. While Computational Fluid Dynamics (CFD) techniques based on Navier Stokes (N-S) and Lattice Boltzman methods are becoming popular, predicting aeroacoustic behavior for complex geometries remains computationally intensive for design process and iteration. The goal of this paper is to evaluate application Navier-Stokes approach coupled with Ffowcs Williams and Hawkings (FW-H), and Broad-band Noise Model (BNS) to evaluate noise levels and predict design direction for industrial applications. Steady-state RANS based approaches are used to evaluate under-hood cooling performance and fan power demand. At each design iteration, noise levels and strength of noise source are evaluated using Gutin’s and broad-band noise models, respectively along with cooling performance. Each design feature selected for the final design has lower fan power and noise level with improved cooling.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Experimental Investigation of the Oil Pressure Regulator Buzz Noise on Diesel Engines

2013-05-13
2013-01-1903
Due to increasing expectations for gasoline like sound quality, today's diesel engines for light and medium duty automotive markets needs to be carefully designed from NVH perspective. Typical engine operating conditions such as low idle, light tip in, tip out demand more attention as they are more prone to generating sound quality concerns. Any abrupt change in the noise signature may be perceived as a sign of malfunction and could have a potential to generate warranty claims. In this paper, an experimental investigation was carried out to determine the root cause of the transient oil pressure regulator buzz noise which occurred during no load transients at low engine speeds. The root cause of the objectionable noise was found to be associated with the impacts of the regulator plunger on the valve seat at certain engine speeds. Noise and vibration diagnostic tests confirmed that the plunger impacts at the seat caused the objectionable buzz noise.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Round Robin Noise Measurement System Analysis Using Light Duty Diesel Engine

2015-06-15
2015-01-2299
NVH development of light duty diesel engines require significant collaboration with the OEM as compared to medium duty and heavy duty diesel engines. Typically, competitive benchmark studies and customer expectations define the NVH targets at the vehicle level and are subsequently cascaded down to the powertrain level. For engine manufacturing companies like Cummins Inc., it is imperative to work closely with OEM to deliver on the NVH expectations. In certain situations, engine level NVH targets needs to be demonstrated in the OEM or 3rd party acoustic test facility for customer satisfaction or commercial purposes. Engine noise tests across different noise test facilities may introduce some variation due to differences in the acoustic test facilities, test hardware, instrumentation differences, etc. In addition, the engine itself is a major source of variation.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
X