Refine Your Search

Topic

Author

Search Results

Journal Article

Proper Orthogonal Decomposition Analysis of Flow Structures Generated around Engine Cooling Fan

2014-04-01
2014-01-0667
A cooling fan is one of the primary components affecting the cooling performance of an engine cooling system. In recent years, with the increase in electric vehicles (EVs) and hybrid vehicles (HVs), the cooling performance and noise level of the cooling fan have become very important. Thus, the development of a low-noise fan with the same cooling performance is urgently required. To address this issue, it is critical to find the relation between the performance of the fan and the flow structures generated around it, which is discussed in the present paper. Specifically, a computational method is employed that uses unsteady Reynolds-averaged Navier-Stokes (URANS) coupling with a sliding mesh (SLM). Measurements of the P-Q (Pressure gain-Flow rate) characteristics are performed to validate the predictive accuracy of the simulation.
Journal Article

Improvement in Vehicle Motion Performance by Suppression of Aerodynamic Load Fluctuations

2015-04-14
2015-01-1537
This study focuses on fluctuations in the aerodynamic load acting on a hatchback car model under steady-state conditions, which can lead to degeneration of vehicle motion performance due to excitation of vehicle vibrations. Large eddy simulations were first conducted on a vehicle model based on a production hatchback car with and without additional aerodynamic devices that had received good subjective assessments by drivers. The numerical results showed that the magnitudes of the lateral load fluctuations were larger without the devices at Strouhal numbers less than approximately 0.1, where surface pressure fluctuations indicated a negative correlation between the two sides of the rear end, which could give rise to yawing and rolling vibrations. Based on the numerical results, wind-tunnel tests were performed with a 28%-scale hatchback car model.
Journal Article

Clarification of Transient Characteristics by Coupled Analysis of Powertrains and Vehicles

2016-04-05
2016-01-1314
With the goal of improving drivability, this research aimed to clarify the mechanism of vehicle longitudinal acceleration, focusing on tip-in acceleration. Conventional typical analysis methods include experimental modal and model-based analysis. However, since the former requires the measurement of impulses and other input forces while the vehicle is stopped, measurement under actual driving conditions is difficult. The latter requires characteristic values such as the stiffness and damping coefficients to be identified in advance, which cannot be achieved either easily or precisely. Therefore, this paper proposes a new experiment-based analysis method. This method enables the acquisition of engine torque and transmission torque/force by measuring only the acceleration values of some components under driving conditions.
Journal Article

Validation and Modeling of Transient Aerodynamic Loads Acting on a Simplified Passenger Car Model in Sinusoidal Motion

2012-04-16
2012-01-0447
Dynamic wind-tunnel tests of a simplified passenger car model were conducted using a two-degree-of-freedom model shaker. Time-resolved aerodynamic loads were derived from a built-in six-component balance and other sensors while the model underwent sinusoidal heaving and pitching motions at frequencies up to 8 Hz. The experimental results showed that frequency-dependent gains and phase differences between the model height/angle and the aerodynamic loads are in close agreement with those predicted by large-eddy simulation (LES) using an arbitrary Lagrangian-Eulerian (ALE) method. Based on these findings, transient aerodynamic loads associated with lateral motions were also estimated by LES analysis. Based on the above results, a full-unsteady aerodynamic load model was then derived in the form of a linear transfer function. The force and moment fluctuations associated with the vertical and lateral motions are well described by the full-unsteady aerodynamic load model.
Technical Paper

Improvement of Vehicle Dynamics Based on Human Sensitivity (Second Report) -A Study of Cornering Feel-

2007-04-16
2007-01-0447
Vehicle body movements that occur during cornering have a strong influence on the evaluation of ride and handling. As a first step, we analyze subjective comments from trained drivers and find that the sense of vision played a major part in cornering feel. As a result of quantitative evaluations, we hypothesize that smaller time lag between roll angle and pitch angle made cornering feel better. We perform a human sensitivity evaluation, which confirmed this hypothesis. Given this result, we derive analytical equations for the roll center kinematics and the damping characteristics, in order to find a theoretical condition for the time lag of 0sec (giving a good cornering feel). We verify this by experiment.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Estimation of Lateral Grip Margin Based on Self-aligning Torque for Vehicle Dynamics Enhancement

2004-03-08
2004-01-1070
It is well known that the self-aligning torque decreases before lateral force is saturated. Focusing on this self-aligning torque change, an estimation method has been developed to detect the friction condition between steered wheels and road surface before the lateral force reaches the friction limit. The lateral grip margin (LGM) is defined based on the self-aligning torque change, which is obtained using the EPS torque and motor current information. The LGM is theoretically analyzed based on the tire model and experimentally verified through the full-scale vehicle test. Moreover, the estimated LGM is applied for the chassis control systems to improve the vehicle dynamics performance.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Modeling of Wall Impinging Behavior with a Fan Shaped Spray

2003-05-19
2003-01-1841
The experiment-based droplet impinging breakup model was applied to a fan shaped spray and the impinging behavior was analyzed quantitatively. Evaluation of the quantitative results with validation tests verified the following. The model enables prediction of fan shaped spray thickness after impingement caused by the breakup of fuel droplets, which could not be represented with the Wall-Jet model, widely used at present. Fuel film movement on a wall is negligible when the injection pressure of the fan shaped spray is high and the spray travelling length is not too short. The proposed heat transfer coefficient between fuel film and the wall is too small to represent the vaporizing rate of the fuel film.
Technical Paper

Development of Down-sized Motor Stator

2013-04-08
2013-01-1763
Down-sizing and dielectric insulation were required for the traction motors of hybrid vehicles. By utilizing the newly developed coil with thick resin insulation atop the conventional enamel film, the use of conventional inter-phase insulation paper was abolished. Furthermore, by adopting the stair-shaped coil structure and spiral winding configuration, the stator size was minimized. With the above technologies, the motor installation to smaller hybrid vehicles was realized, thus contributing to weight reduction of hybrid vehicles.
Technical Paper

Multifunctional Surface Treatment for Car Air Conditioners

1998-02-23
980284
In order to improve corrosion resistance and thermal efficiency of the air conditioner evaporator, a coating which provides hydrophilicity was formed over the chromate coating. In addition, there has been greater demand for air with fewer smells. This report describes the cause of “dusty odor” and a method to reduce it. The dusty odor is caused by a little corrosion of the substrate aluminum. Hydrophilic coating film dissolves little by little in condensed water, and substrate aluminum is exposed. A method to prevent the odor was developed by forming a coating giving hydrophilicity and durability to the evaporator surface.
Technical Paper

Numerical Investigation of Vehicle Aerodynamics with Overlaid Grid System

1995-02-01
950628
The drag reduction mechanism in newly developed low aerodynamic drag model car is investigated through numerical simulation. In order to deal with the computational domain around a three-dimensional complicated vehicle body, the method of overlaid grid system is employed. The results of computational case study on the body shape demonstrate that the lateral tapering near the rear end and the spats around the wheels bring better flow properties for drag reduction, such as the pressure recovery in the wake.
Technical Paper

Automotive Radar Signal Source Using InP Based MMICs

1997-02-24
970175
A 60GHz millimeter-wave signal source for automotive radar was developed with MMICs. This signal source consists of two MMICs; a 30GHz VCO and a 30GHz-to-60GHz frequency doubler. For the transistor of these MMICs, we used the InAIAs/InGaAs on InP pseudomorphic HEMT with a 0.5μm gate length. Because of the high electron mobility and the high sheet charge density, the HEMT performed with sufficient output power gain in the millimeter-wave frequency range. The oscillation frequency of the signal source was controlled from 58.403GHz to 59.373GHz linearly. These frequency characteristics will satisfy the specifications of the FMCW radar system.
Technical Paper

Friction Characteristics Analysis for Clamping Force Setup in Metal V-Belt Type CVT

2005-04-11
2005-01-1462
In order to increase the transfer efficiency in a metal V-belt type CVT (Continuously Variable Transmission), it is effective to lower belt clamping force from a current setting value. However, setting the clamping force too low will cause a macro slip (large belt slip). Thus, in order to set the clamping force to the proper level, the friction characteristics between the belt and the pulley (belt friction characteristics) must be understood in detail, and the macro slip threshold must be defined. In this paper, we shall propose a friction expression model for a metal V-belt type CVT and use this model to explain the speed reducing ratio dependence and speed dependence of the maximum friction coefficient (μmax). We shall also define the macro slip threshold in torque fluctuation environment.
Technical Paper

Relationship between Localized Spine Deformation and Cervical Vertebral Motions for Low Speed Rear Impacts Using Human Volunteers

1999-09-23
1999-13-0010
It is important to more clearly identify the relationship among the ramping-up motion, straightening of the whole spine, and cervical vertebrae motion in order to clarify minor neck injury mechanism. The aim of the current study is to verify the influence of the change of the spine configuration on human cervical vertebral motion and on head/neck/torso kinematics under low speed rear-end impacts. Seven healthy human volunteers participated in the experiment under the supervision of an ethics committee. Each subject sat on a seat mounted on a sled that glided backward on rails and simulated actual car impact acceleration. Impact speeds (4, 6, and 8 km/h), and seat stiffness (rigid and soft) without headrest were selected. During the experiment, the change of the spine configuration (measured by a newly developed spine deformation sensor with 33 paired set strain gauges and placed on the skin) and the interface load-pressure distribution was recorded.
Technical Paper

Objective Evaluation of Exciting Engine Sound in Passenger Compartment During Acceleration

2000-03-06
2000-01-0177
This paper describes an objective evaluation method for the engine sound quality in a car interior during acceleration. Two principal factors, pleasantness and raciness, of the engine sound quality were found with a subjective evaluation test in a laboratory. Psycho-acoustic indexes corresponding to these factors were revealed by investigating the correlation among subjective ratings and acoustic characteristics. The index of raciness was originally proposed for the assessment of sound that makes driving fun when the sound is emphasized. We propose that the design of engine sound is required with consideration of the balance between pleasantness and raciness.
Technical Paper

Study of Cooling Drag Reduction Method by Controlling Cooling Flow

2014-04-01
2014-01-0679
As the demand for improved fuel economy increases and new CO2 regulations have been issued, aerodynamic drag reduction has become more critical. One of the important factors to consider is cooling drag. One way to reduce cooling drag is to decrease the air flow volume through the front grille, but this has an undesirable impact on cooling performance as well as component heat load in the under-hood area. For this reason, cooling drag reduction methods while keeping reliability, cooling performance and component heat management were investigated in this study. At first, air flow volume reduction at high speed was studied, where aerodynamic drag has the greatest influence. For vehicles sold in the USA, cooling specification tends to be determined based on low speed, while towing or driving up mountain roads, and therefore, there may be extra cooling capacity under high speed conditions.
Technical Paper

Development of High Performance Radiators by Fin Optimization

2014-04-01
2014-01-0635
Requirements for fuel economy improvement and reduction in the vehicles engine compartment have increased significantly in the pass years. Performances in radiators have driven changes in terms of compactness and weight reductions. By focusing on the air flow we have optimized the radiator fin and developed a high performance radiator. A similar performance was achieved using an 11mm core depth which has 30% weight reduction compared to a 16mm core depth. The purpose of this paper is to present a technical outline about fin optimization.
Technical Paper

Reduction of the BPF Noise Radiated from an Engine Cooling Fan

2014-04-01
2014-01-0631
This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD).
Technical Paper

Quantification of Interface Thermal Resistance and Prediction of Thermal Conductivity by Observation of Stereoscopic Filler Dispersion in Polymer Composites

2015-04-14
2015-01-0695
In electronic products, the recently increasing thermal radiation demands higher thermal conductivity of polymer composites. However, inaccurate observation of the filler dispersion within the polymer does not allow for accurate quantification of Interface Thermal Resistance and subsequently the prediction of thermal conductivity. Therefore, optimum filler design could not be achieved. Firstly in this report, accurate stereoscopic filler dispersion was observed by FIB-SEM. Secondly, quantification of Interface Thermal Resistance could be achieved by thermal conduction analysis using filler dispersion model. Thirdly, this Interface Thermal Resistance enabled the prediction of the thermal bulk conductivity. Lastly, the prediction made above could be validated by comparison of predicted value to measured value. This result may lead to optimum filler design and thereby to the development of higher thermal radiation materials.
X